A multi-function protecting forest system was planed and arranged elaborately for im-provement of the local ecological conditions and high economical benefit. The system in-cludes level farmland shelter belt network, ...A multi-function protecting forest system was planed and arranged elaborately for im-provement of the local ecological conditions and high economical benefit. The system in-cludes level farmland shelter belt network, hillside farmland shelter belt network, stereoscop-ic sparse-wood pasture, erosion control fuel forest, fast growing commercial forest, eco-nomical forest, salt-soda controlling project and salt-soda protecting forest on salt-sodaland, ect..展开更多
The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ec...The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ecosystem service value of the Northeast Forest Belt from 2005 to 2020 was assessed,focusing on spatial–temporal changes and the driving forces behind these dynamics.Using multi-source data,the equivalent factor method,and geo-graphic detectors,we analyzed natural and socio-economic factors affecting the region.which was crucial for effective ecological conservation and land-use planning.Enhanced the effectiveness of policy formulation and land use plan-ning.The results show that the ESV of the Northeast Forest Belt exhibits an overall increasing trend from 2005 to 2020,with forests and wetlands contributing the most.However,there are significant differences between forest belts.Driven by natural and socio-economic factors,the ESV of forest belts in Heilongjiang and Jilin provinces showed significant growth.In contrast,the ESV of Forest Belts in Liaoning and Inner Mongolia of China remains relatively stable,but the spatial differentiation within these regions is characterized by significant clustering of high-value and low-value areas.Furthermore,climate regulation and hydrological regulation services were identified as the most important ecological functions in the Northeast Forest Belt,contributing greatly to regional ecological stability and human well-being.The ESV in the Northeast Forest Belt is improved during the study period,but the stability of the ecosystem is still chal-lenged by the dual impacts of natural and socio-economic factors.To further optimize regional land use planning and ecological protection policies,it is recommended to prior-itize the conservation of high-ESV areas,enhance ecological restoration efforts for wetlands and forests,and reasonably control the spatial layout of urban expansion and agricul-tural development.Additionally,this study highlights the importance of tailored ecological compensation policies and strategic land-use planning to balance environmental protec-tion and economic growth.展开更多
Tree growth synchrony serves as a valuable ecological indicator of forest resilience to climate stress and disturbances.However,our understanding of how increasing temperature affects tree growth synchrony during rapi...Tree growth synchrony serves as a valuable ecological indicator of forest resilience to climate stress and disturbances.However,our understanding of how increasing temperature affects tree growth synchrony during rapidly and slowly warming periods in ecosystems with varying climatic conditions remains limited.By using tree-ring data from temperate broadleaf(Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Juglans mandshurica)and Korean pine(Pinus koraiensis)mixed forests in northeast China,we investigated the effects of climate change,particularly warming,on the growth synchrony of five dominant temperate tree species across contrasting warm-dry and cool-wet climate conditions.Results show that temperature over water availability was the primary factor driving the growth and growth synchrony of the five species.Growth synchrony was significantly higher in warm-dry than in cool-wet areas,primarily due to more uniform climate conditions and higher climate sensitivity in the former.Rapid warming from the 1960s to the 1990s significantly enhanced tree growth synchrony in both areas,followed by a marked reversal as temperatures exceeded a certain threshold or warming slowed down,particularly in the warm-dry area.The growth synchrony variation patterns of the five species were highly consistent over time,although broadleaves exhibited higher synchrony than conifers,suggesting potential risks to forest resilience and stability under future climate change scenarios.Growing season temperatures and non-growing season temperatures and precipitation had a stronger positive effect on tree growth in the cool-wet area compared to the warm-dry area.High relative humidity hindered growth in the cool-wet area but enhanced it in the warm-dry area.Overall,our study highlights that the diversity and sensitivity of climate-growth relationships directly determine spatiotemporal growth synchrony.Temperature,along with water availability,shape long-term forest dynamics by affecting tree growth and synchrony.These results provide crucial insights for forest management practice to enhance structural diversity and resilience capacity against climate changeinduced synchrony shifts.展开更多
Cultural ecosystem services(CES)provided by urban green infrastructure are essential for enhancing social well-being and resilience.Identifying and mapping CES at a local scale is crucial for informed land-use decisio...Cultural ecosystem services(CES)provided by urban green infrastructure are essential for enhancing social well-being and resilience.Identifying and mapping CES at a local scale is crucial for informed land-use decisions that align with citizens'perceptions.However,research on ecosystem services in Romania has been limited,with a notable gap in the assessment of CES provided by urban green spaces.This study is the first to focus on Băneasa Forest,the only urban forest in Bucharest,which serves as a vital recreational area for thousands of residents and visitors.For the first time in Romania,this research uses a web-based Participatory GIS survey to collect spatially referenced data.The survey,which combines questionnaires and mapping exercises,allows us to produce high-resolution CES maps based on 816 responses.The results reveal that the forest's natural characteristics are perceived as the primary contributors to CES.These findings are valuable for urban planners,as they highlight the needs and expectations of forest visitors,promote conservation efforts,and foster collaboration to prevent conflicts.Alongside factors frequently discussed in the literature,such as age and accessibility,the percentage of green space in residents'neighborhoods emerges as a significant factor influencing CES preferences.This insight presents a novel contribution to the literature,being of particular importance for urban planners and policymakers,as it underscores the need to consider not just the green space within parks and forests,but also the broader context of surrounding neighborhoods when planning for CES.Understanding that the availability of nearby green space influences residents'CES preferences can guide more effective strategies to enhance access to CES in urban areas,both in Bucharest and elsewhere.This is especially relevant in the face of climate change and other emerging challenges,which are likely to increase the demand for CES in the future.展开更多
The coastal zone ecological restoration project has successfully restored a cumulative shoreline length of 76 km in Fanhe Harbor and Kaozhou Bay ecological restoration shoreline (mangrove forest) located in Huidong Co...The coastal zone ecological restoration project has successfully restored a cumulative shoreline length of 76 km in Fanhe Harbor and Kaozhou Bay ecological restoration shoreline (mangrove forest) located in Huidong County, Huizhou City. Additionally, 5 619.5 m of artificial shoreline has been developed as part of the ecological restoration efforts. Various methods, including UAV remote sensing, orthophoto acquisition, and analysis using ArcGIS software, were employed to assess the length, width, coverage, and other relevant indicators of the newly established ecologically restored shoreline. The findings indicate that the average width, coverage, and ecosystem stability of mangrove forests in the restored area satisfy the criteria for the acceptance of ecological shoreline restoration. Furthermore, a relatively stable ecosystem has been established for over two years. This study offers a scientific foundation for the ecological restoration of mangrove forests and holds considerable significance for the conservation and utilization of mangrove forest resources.展开更多
Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a signifi...Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a significant role in changing the climate.However,they also face limitations,including uncertainties related to future global climate change,land use,and land cover.This paper summarized the important role of agroforestry systems in the global carbon cycle and carbon balance from the methods and means used in the research on carbon storage and carbon balance and the research status of carbon storage and carbon balance in agroforestry ecosystems at home and abroad,and pointed out the problems that need to be paid attention to in future research.展开更多
Pueraria montana is a perennial twining vine species of Pueraria in Leguminosae.Because of its fast growth and strong climbing and covering ability,this species has the potential threat of invading forest ecosystem.Ba...Pueraria montana is a perennial twining vine species of Pueraria in Leguminosae.Because of its fast growth and strong climbing and covering ability,this species has the potential threat of invading forest ecosystem.Based on the investigation of the occurrence and harm of P.montana in the"four mountains"forest ecosystem in the central urban area of Chongqing,combined with its growth habits and biological characteristics,we comprehensively evaluated its harm risk.The results show that P.montana is widely distributed in the forest ecosystem within the"four mountains"in the central urban area of Chongqing.On average,there was a distribution site of P.montana every 1.38 km of forest road with a scale of 0.43 hm 2/survey point and a coverage of about 42.86%.P.montana mainly occupy forest land by covering and climbing,threatening the original vegetation of forest land.It grows rapidly,and its ability of diffusion and colonization is very strong.The average length of new branches was 11.52 m/year,and the number of effective tillers was 5.25.According to National Forestry Pest Risk Analysis Index System,the risk assessment value of P.montana was 2.51,so it is a medium-risk harmful plant to forestry.It is suggested that the forestry department should strengthen the management of P.montana to prevent its further spread.展开更多
Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these ...Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these services.This study introduces the Recreational and Aesthetic Values of Forested Landscapes(RAFL)index,a novel framework combining six measurable recreational and aesthetic components:Stewardship,Naturalness,Complexity,Visual Scale,Historicity,and Ephemera.The RAFL index was integrated into a Linear Programming(LP)Resource Capability Model(RCM)to assess trade-offs between CES and other ecosystem services,including timber production,wildfire resistance,and biodiversity.The approach was applied in a case study in Northern Portugal,comparing two forest management scenarios:Business as Usual(BAU),dominated by eucalyptus plantations,and an Alternative Scenario(ALT),focused on the conversion to native species:cork oak,chestnut,and pedunculate oak.Results revealed that the ALT scenario consistently achieved higher RAFL values,reflecting its potential to enhance CES,while also supporting higher biodiversity and wildfire resilience compared to the BAU scenario.Results highlighted further that management may maintain steady timber production and wildfire regulatory services while addressing concerns with CES.This study provides a replicable methodology for quantifying CES and integrating them into forest management frameworks,offering actionable insights for decision-makers.The findings highlight the effectiveness of the approach in designing landscape mosaics that provide CES while addressing the need to supply provisioning and regulatory ecosystem services.展开更多
This study focuses on the ecosystem cultural service quality of Qu County Congren Valley Forest Park from the perspective of tourist perception.Using the Importance-Performance Analysis(IPA)questionnaire survey method...This study focuses on the ecosystem cultural service quality of Qu County Congren Valley Forest Park from the perspective of tourist perception.Using the Importance-Performance Analysis(IPA)questionnaire survey method and SPSS data analysis techniques,we systematically evaluate tourists’cognitive differences and improvement paths regarding the cultural service value of the scenic area.Based on the nonmaterial characteristics of ecosystem cultural services,combined with the unique Congren culture and natural landscape resources of Congren Valley,we designed a five-dimensional scale including natural landscape and ecological protection,cultural display and interpretation services,cultural activity participation and experience,infrastructure and supporting services,and safety management.This covers tourists’evaluations of the importance of elements such as cultural displays,interpretation systems,interactive activities,and facility support,as well as their actual satisfaction feedback.Through descriptive statistical analysis,reliability and validity testing,factor analysis,and IPA matrix analysis,we reveal the core contradictions and improvement directions perceived by tourists.The study found that the convenience of facilities such as signage,rest areas,toilets,roads,and the cleanliness of the scenic area are key areas for improvement.Additionally,different age groups perceive differences in the cultural service quality of the Congren Valley Forest Park ecosystem.The study concludes that tourists have a high level of concern for the convenience of scenic infrastructure and sanitary environment.Improving these facilities can help increase tourist satisfaction and the overall service quality of the scenic area.Simultaneously,meeting the needs of segmented markets and constructing a three-in-one service system of“deep excavation of cultural symbols–digital storytelling–immersive scenes”is recommended.展开更多
Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations...Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.展开更多
Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest m...Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.展开更多
Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and...Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.展开更多
In this era of biodiversity loss and climate change,quantifying the impacts of natural disturbance on forest communities is imperative to improve biodiversity conservation efforts.Epiphytic and epixylic lichens are ef...In this era of biodiversity loss and climate change,quantifying the impacts of natural disturbance on forest communities is imperative to improve biodiversity conservation efforts.Epiphytic and epixylic lichens are effective forest quality bioindicators,as they are generally long-lived organisms supported by continuity of specific forest structures and their associated microclimatic features.However,how lichen communities respond to the effects of fluctuating historical disturbances remains unclear.Using a dendrochronological approach,this study investigates how natural disturbance dynamics indirectly influence various lichen community metrics in some of Europe's best-preserved primary mixed-beech forests.Mixed modelling revealed that natural historical disturbance processes have decades-long effects on forest structural attributes,which had both congruent and divergent impacts on lichen community richness and composition.Total species richness indirectly benefited from both historical and recent higher-severity disturbances via increased standing dead tree basal area and canopy openness respectively-likely through the presence of both pioneer and late-successional species associated with these conditions.Red-listed species richness showed a dependence on habitat continuity(old trees),and increased with disturbance-related structures(standing dead trees)whilst simultaneously benefiting from periods without severe disturbance events(old trees and reduced deadwood volume).However,if the disturbance occurred over a century in the past,no substantial effect on forest structure was detected.Therefore,while disturbance-mediated forest structures can promote overall richness,threatened species appear vulnerable to more severe disturbance events-a concern,as disturbances are predicted to intensify with climate change.Additionally,the high number of threatened species found reinforce the critical role of primary forest structural attributes for biodiversity maintenance.Hence,we recommend a landscape-scale conservation approach encompassing forest patches in different successional stages to support diverse lichen communities,and the consideration of long-term disturbance dynamics in forest conservation efforts,as they provide critical insights for safeguarding biodiversity in our changing world.展开更多
Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qing...Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale.展开更多
Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change an...Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change and redistribution of species.To investigate this,we compare biodiversity of plants(assessed using vegetation plots)and arthropods(collected with Malaise traps,analyzed using metabarcoding)and productivity(tree growth,determined using dendrochronology)in protected and non-protected oak(Quercus spp.)forests along a latitudinal gradient(55.6°N–60.8°N)in Sweden.We also compare historical,recent and projected future climate in the region.In contrast to established global latitudinal diversity gradients,species richness of plants and arthropods increased northwards,possibly reflecting recent climate-induced community redistributions,but neither was higher in protected than in non-protected areas,nor associated with contemporary ground temperature.Species composition of arthropods also did not differ between protected and non-protected areas.Arthropod biomass increased with latitude,suggesting that the magnitude of cascading effects mediated via their roles as pollinators,herbivores,and prey for other trophic levels,varies geographically and will change with a moving climate.Annual growth rate of oaks(an ecosystem service in the form of biomass increase and carbon sequestration)was independent of latitude and did not differ between protected and non-protected areas.Our findings question the efficacy of contemporary designation and management of protected oak forests,and emphasize that development and implementation of modified climate smart conservation strategies is needed to safeguard ecosystem functioning,biodiversity,and recreational values of protected forest areas against future challenges.展开更多
In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method...In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things(IoT)environment,leveraging the NSL-KDD dataset.To achieve high accuracy,the authors used the feature extraction technique in combination with an autoencoder,integrated with a gated recurrent unit(GRU).Therefore,the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization(PSO),and PSO has been employed for training the features.The final classification of features has been carried out by using the proposed RF-GNB random forest with the Gaussian Naïve Bayes classifier.The proposed model has been evaluated and its performance is verified with some of the standard metrics such as precision,accuracy rate,recall F1-score,etc.,and has been compared with different existing models.The generated results that detected approximately 99.87%of intrusions within the IoT environments,demonstrated the high performance of the proposed method.These results affirmed the efficacy of the proposed method in increasing the accuracy of intrusion detection within IoT network systems.展开更多
With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threat...With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality.展开更多
Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satell...Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.展开更多
The Qinba Mountains are climatically and ecologically recognized as the north-south transitional zone of China.Analysis of its phenology is critical for comprehending the response of vegetation to climatic change.We r...The Qinba Mountains are climatically and ecologically recognized as the north-south transitional zone of China.Analysis of its phenology is critical for comprehending the response of vegetation to climatic change.We retrieved the start of spring phenology(SOS)of eight forest communities from the MODIS products and adopted it as an indicator for spring phenology.Trend analysis,partial correlation analysis,and GeoDetector were employed to reveal the spatio-temporal patterns and climatic drivers of SOS.The results indicated that the SOS presented an advance trend from 2001 to 2020,with a mean rate of−0.473 d yr^(−1).The SOS of most forests correlated negatively with air temperature(TEMP)and positively with precipitation(PRE),suggesting that rising TEMP and increasing PRE in spring would forward and delay SOS,respectively.The dominant factors influencing the sensitivity of SOS to climatic variables were altitude,forest type,and latitude,while the effects of slope and aspect were relatively minor.The response of SOS to climatic factors varied significantly in space and among forest communities,partly due to the influence of altitude,slope,and aspect.展开更多
Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the dis...Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the distribution areas of Moso bamboo(Phyllostachys edulis)in China to explore the effects of bamboo invasion on forest structural attributes and diameter–height allometries by comparing paired plots of bamboo,mixed bamboo-tree,and non-bamboo forests along the transects.We found that bamboo invasion decreased the mean and maximum diameter at breast height,maximum height,and total basal area,but increased the mean height,stem density,and scaling exponent for stands.Bamboo also had a higher scaling exponent than tree,particularly in mixed forests,suggesting a greater allocation of biomass to height growth.As invasion intensity increased,bamboo allometry became more plastic and decreased significantly,whereas tree allometry was indirectly promoted by increasing stem density.Additionally,a humid climate may favour the scaling exponents for both bamboo and tree,with only minor contributions from topsoil moisture and nitrogen content.The inherent superiority of diameter–height allometry allows bamboo to outcompete tree and contributes to its invasive success.Our findings provide a theoretical basis for understanding the causes and consequences of bamboo invasion.展开更多
文摘A multi-function protecting forest system was planed and arranged elaborately for im-provement of the local ecological conditions and high economical benefit. The system in-cludes level farmland shelter belt network, hillside farmland shelter belt network, stereoscop-ic sparse-wood pasture, erosion control fuel forest, fast growing commercial forest, eco-nomical forest, salt-soda controlling project and salt-soda protecting forest on salt-sodaland, ect..
基金funded by the Central University D Project(HFW230600022)National Natural Science Foundation of China(71973021)+1 种基金National Natural Science Foundation Youth Funding Project(72003022)Heilongjiang Province University Think Tank Open Topic(ZKKF2022173).
文摘The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ecosystem service value of the Northeast Forest Belt from 2005 to 2020 was assessed,focusing on spatial–temporal changes and the driving forces behind these dynamics.Using multi-source data,the equivalent factor method,and geo-graphic detectors,we analyzed natural and socio-economic factors affecting the region.which was crucial for effective ecological conservation and land-use planning.Enhanced the effectiveness of policy formulation and land use plan-ning.The results show that the ESV of the Northeast Forest Belt exhibits an overall increasing trend from 2005 to 2020,with forests and wetlands contributing the most.However,there are significant differences between forest belts.Driven by natural and socio-economic factors,the ESV of forest belts in Heilongjiang and Jilin provinces showed significant growth.In contrast,the ESV of Forest Belts in Liaoning and Inner Mongolia of China remains relatively stable,but the spatial differentiation within these regions is characterized by significant clustering of high-value and low-value areas.Furthermore,climate regulation and hydrological regulation services were identified as the most important ecological functions in the Northeast Forest Belt,contributing greatly to regional ecological stability and human well-being.The ESV in the Northeast Forest Belt is improved during the study period,but the stability of the ecosystem is still chal-lenged by the dual impacts of natural and socio-economic factors.To further optimize regional land use planning and ecological protection policies,it is recommended to prior-itize the conservation of high-ESV areas,enhance ecological restoration efforts for wetlands and forests,and reasonably control the spatial layout of urban expansion and agricul-tural development.Additionally,this study highlights the importance of tailored ecological compensation policies and strategic land-use planning to balance environmental protec-tion and economic growth.
基金supported by the National Natural Science Foundation of China(Nos.42107476 and 42177421)the China Postdoctoral International Exchange Fellowship Program(No.PC2021099)+1 种基金the Science and Technology Innovation Program of Hunan Province(No.2020RC2058)the China Scholarship Council(CSC,No.202206600004,to D.Yuan).
文摘Tree growth synchrony serves as a valuable ecological indicator of forest resilience to climate stress and disturbances.However,our understanding of how increasing temperature affects tree growth synchrony during rapidly and slowly warming periods in ecosystems with varying climatic conditions remains limited.By using tree-ring data from temperate broadleaf(Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Juglans mandshurica)and Korean pine(Pinus koraiensis)mixed forests in northeast China,we investigated the effects of climate change,particularly warming,on the growth synchrony of five dominant temperate tree species across contrasting warm-dry and cool-wet climate conditions.Results show that temperature over water availability was the primary factor driving the growth and growth synchrony of the five species.Growth synchrony was significantly higher in warm-dry than in cool-wet areas,primarily due to more uniform climate conditions and higher climate sensitivity in the former.Rapid warming from the 1960s to the 1990s significantly enhanced tree growth synchrony in both areas,followed by a marked reversal as temperatures exceeded a certain threshold or warming slowed down,particularly in the warm-dry area.The growth synchrony variation patterns of the five species were highly consistent over time,although broadleaves exhibited higher synchrony than conifers,suggesting potential risks to forest resilience and stability under future climate change scenarios.Growing season temperatures and non-growing season temperatures and precipitation had a stronger positive effect on tree growth in the cool-wet area compared to the warm-dry area.High relative humidity hindered growth in the cool-wet area but enhanced it in the warm-dry area.Overall,our study highlights that the diversity and sensitivity of climate-growth relationships directly determine spatiotemporal growth synchrony.Temperature,along with water availability,shape long-term forest dynamics by affecting tree growth and synchrony.These results provide crucial insights for forest management practice to enhance structural diversity and resilience capacity against climate changeinduced synchrony shifts.
基金supported by the University of Bucharest through the“People and trees”CIVIS project.
文摘Cultural ecosystem services(CES)provided by urban green infrastructure are essential for enhancing social well-being and resilience.Identifying and mapping CES at a local scale is crucial for informed land-use decisions that align with citizens'perceptions.However,research on ecosystem services in Romania has been limited,with a notable gap in the assessment of CES provided by urban green spaces.This study is the first to focus on Băneasa Forest,the only urban forest in Bucharest,which serves as a vital recreational area for thousands of residents and visitors.For the first time in Romania,this research uses a web-based Participatory GIS survey to collect spatially referenced data.The survey,which combines questionnaires and mapping exercises,allows us to produce high-resolution CES maps based on 816 responses.The results reveal that the forest's natural characteristics are perceived as the primary contributors to CES.These findings are valuable for urban planners,as they highlight the needs and expectations of forest visitors,promote conservation efforts,and foster collaboration to prevent conflicts.Alongside factors frequently discussed in the literature,such as age and accessibility,the percentage of green space in residents'neighborhoods emerges as a significant factor influencing CES preferences.This insight presents a novel contribution to the literature,being of particular importance for urban planners and policymakers,as it underscores the need to consider not just the green space within parks and forests,but also the broader context of surrounding neighborhoods when planning for CES.Understanding that the availability of nearby green space influences residents'CES preferences can guide more effective strategies to enhance access to CES in urban areas,both in Bucharest and elsewhere.This is especially relevant in the face of climate change and other emerging challenges,which are likely to increase the demand for CES in the future.
文摘The coastal zone ecological restoration project has successfully restored a cumulative shoreline length of 76 km in Fanhe Harbor and Kaozhou Bay ecological restoration shoreline (mangrove forest) located in Huidong County, Huizhou City. Additionally, 5 619.5 m of artificial shoreline has been developed as part of the ecological restoration efforts. Various methods, including UAV remote sensing, orthophoto acquisition, and analysis using ArcGIS software, were employed to assess the length, width, coverage, and other relevant indicators of the newly established ecologically restored shoreline. The findings indicate that the average width, coverage, and ecosystem stability of mangrove forests in the restored area satisfy the criteria for the acceptance of ecological shoreline restoration. Furthermore, a relatively stable ecosystem has been established for over two years. This study offers a scientific foundation for the ecological restoration of mangrove forests and holds considerable significance for the conservation and utilization of mangrove forest resources.
文摘Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a significant role in changing the climate.However,they also face limitations,including uncertainties related to future global climate change,land use,and land cover.This paper summarized the important role of agroforestry systems in the global carbon cycle and carbon balance from the methods and means used in the research on carbon storage and carbon balance and the research status of carbon storage and carbon balance in agroforestry ecosystems at home and abroad,and pointed out the problems that need to be paid attention to in future research.
基金Supported by Special Project of Performance Incentive and Guidance for Scientific Research Institutions in Chongqing(cstc2022jxjl80025).
文摘Pueraria montana is a perennial twining vine species of Pueraria in Leguminosae.Because of its fast growth and strong climbing and covering ability,this species has the potential threat of invading forest ecosystem.Based on the investigation of the occurrence and harm of P.montana in the"four mountains"forest ecosystem in the central urban area of Chongqing,combined with its growth habits and biological characteristics,we comprehensively evaluated its harm risk.The results show that P.montana is widely distributed in the forest ecosystem within the"four mountains"in the central urban area of Chongqing.On average,there was a distribution site of P.montana every 1.38 km of forest road with a scale of 0.43 hm 2/survey point and a coverage of about 42.86%.P.montana mainly occupy forest land by covering and climbing,threatening the original vegetation of forest land.It grows rapidly,and its ability of diffusion and colonization is very strong.The average length of new branches was 11.52 m/year,and the number of effective tillers was 5.25.According to National Forestry Pest Risk Analysis Index System,the risk assessment value of P.montana was 2.51,so it is a medium-risk harmful plant to forestry.It is suggested that the forestry department should strengthen the management of P.montana to prevent its further spread.
基金supported by the Forest Research Centre,a research unit funded by Fundacao para a Ciencia e a Tecnologia I.P.(FCT),Portugal(UIDB/00239/2020)the Associated Laboratory TERRA(LA/P/0092/2020)+4 种基金Additional funding was provided through the Ph.D.grant awarded to Dagm Abate(UI/BD/151525/2021)by two key projects:H2020-MSCA-RISE-2020/101007950,titled“DecisionES-Decision Support for the Supply of Ecosystem Services under Global Change,”funded by the Marie Curie International Staff Exchange Scheme,H2020-LCGD-2020-3/101037419,titled“FIRE-RES-Innovative technologies and socio-ecological economic solutions for fireresilient territories in Europe,”funded by the EU Horizon 2020—Research and Innovation Framework Programmesupported by a project MODFIRE—a multiple criteria approach to integrate wildfire behavior in forest management planning with reference PCIF/MOS/0217/2017a contract from Dr.Susete Marques in the scope of Norma Transitoria—DL57/2016/CP1382/CT15a grant from Fundacao para a Ciencia e a Tecnologia(FCT),Portugal to Dr.Guerra-Hernandez(CEECIND/02576/2022).
文摘Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these services.This study introduces the Recreational and Aesthetic Values of Forested Landscapes(RAFL)index,a novel framework combining six measurable recreational and aesthetic components:Stewardship,Naturalness,Complexity,Visual Scale,Historicity,and Ephemera.The RAFL index was integrated into a Linear Programming(LP)Resource Capability Model(RCM)to assess trade-offs between CES and other ecosystem services,including timber production,wildfire resistance,and biodiversity.The approach was applied in a case study in Northern Portugal,comparing two forest management scenarios:Business as Usual(BAU),dominated by eucalyptus plantations,and an Alternative Scenario(ALT),focused on the conversion to native species:cork oak,chestnut,and pedunculate oak.Results revealed that the ALT scenario consistently achieved higher RAFL values,reflecting its potential to enhance CES,while also supporting higher biodiversity and wildfire resilience compared to the BAU scenario.Results highlighted further that management may maintain steady timber production and wildfire regulatory services while addressing concerns with CES.This study provides a replicable methodology for quantifying CES and integrating them into forest management frameworks,offering actionable insights for decision-makers.The findings highlight the effectiveness of the approach in designing landscape mosaics that provide CES while addressing the need to supply provisioning and regulatory ecosystem services.
基金“Chongqing Graduate Student Scientific Research Innovation Project”(YKJCX2420813)。
文摘This study focuses on the ecosystem cultural service quality of Qu County Congren Valley Forest Park from the perspective of tourist perception.Using the Importance-Performance Analysis(IPA)questionnaire survey method and SPSS data analysis techniques,we systematically evaluate tourists’cognitive differences and improvement paths regarding the cultural service value of the scenic area.Based on the nonmaterial characteristics of ecosystem cultural services,combined with the unique Congren culture and natural landscape resources of Congren Valley,we designed a five-dimensional scale including natural landscape and ecological protection,cultural display and interpretation services,cultural activity participation and experience,infrastructure and supporting services,and safety management.This covers tourists’evaluations of the importance of elements such as cultural displays,interpretation systems,interactive activities,and facility support,as well as their actual satisfaction feedback.Through descriptive statistical analysis,reliability and validity testing,factor analysis,and IPA matrix analysis,we reveal the core contradictions and improvement directions perceived by tourists.The study found that the convenience of facilities such as signage,rest areas,toilets,roads,and the cleanliness of the scenic area are key areas for improvement.Additionally,different age groups perceive differences in the cultural service quality of the Congren Valley Forest Park ecosystem.The study concludes that tourists have a high level of concern for the convenience of scenic infrastructure and sanitary environment.Improving these facilities can help increase tourist satisfaction and the overall service quality of the scenic area.Simultaneously,meeting the needs of segmented markets and constructing a three-in-one service system of“deep excavation of cultural symbols–digital storytelling–immersive scenes”is recommended.
基金This research was funded by the National Natural Science Foundation of China(Grant Nos.31870426).
文摘Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.
基金funded by the National Key R&D Program of China(Grant No.2022YFD2200500)the Forestry Public Welfare Scientific Research Project(Grant No.201504303)。
文摘Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.
基金supported by the National Natural Science Foundation of China(Nos.31800369,32271686,U1904204)the State Scholarship Fund of Chinathe Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.182101510005)。
文摘Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.
基金supported by the Czech Science Foundation(grant no.GACR 22-31322S)the Czech University of Life Sciences Prague(grant no.IGA A_19_22)+3 种基金supported by the Operational Programme Integrated Infrastructure(OPII)funded by the ERDF(ITMS313011T721)Specific research PrF UHK 2114/2022 for the financial supportthe financial support of the Rita-Levi Montalcini(2019)programmefunded by the Italian Ministry of University。
文摘In this era of biodiversity loss and climate change,quantifying the impacts of natural disturbance on forest communities is imperative to improve biodiversity conservation efforts.Epiphytic and epixylic lichens are effective forest quality bioindicators,as they are generally long-lived organisms supported by continuity of specific forest structures and their associated microclimatic features.However,how lichen communities respond to the effects of fluctuating historical disturbances remains unclear.Using a dendrochronological approach,this study investigates how natural disturbance dynamics indirectly influence various lichen community metrics in some of Europe's best-preserved primary mixed-beech forests.Mixed modelling revealed that natural historical disturbance processes have decades-long effects on forest structural attributes,which had both congruent and divergent impacts on lichen community richness and composition.Total species richness indirectly benefited from both historical and recent higher-severity disturbances via increased standing dead tree basal area and canopy openness respectively-likely through the presence of both pioneer and late-successional species associated with these conditions.Red-listed species richness showed a dependence on habitat continuity(old trees),and increased with disturbance-related structures(standing dead trees)whilst simultaneously benefiting from periods without severe disturbance events(old trees and reduced deadwood volume).However,if the disturbance occurred over a century in the past,no substantial effect on forest structure was detected.Therefore,while disturbance-mediated forest structures can promote overall richness,threatened species appear vulnerable to more severe disturbance events-a concern,as disturbances are predicted to intensify with climate change.Additionally,the high number of threatened species found reinforce the critical role of primary forest structural attributes for biodiversity maintenance.Hence,we recommend a landscape-scale conservation approach encompassing forest patches in different successional stages to support diverse lichen communities,and the consideration of long-term disturbance dynamics in forest conservation efforts,as they provide critical insights for safeguarding biodiversity in our changing world.
基金supported by the CAS"Light of West China"Program(2021XBZG-XBQNXZ-A-007)the National Natural Science Foundation of China(31971436)the State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy Sciences(SKLCS-OP-2021-06).
文摘Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale.
基金supported by The Swedish National Research Programme on Climate and Formas,under grant numbers Dnr.2018-02846 and Dnr.2021-02142,to M.F.,A.F.,and J.S.,and by Linnaeus University,to A.F.and M.F.
文摘Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change and redistribution of species.To investigate this,we compare biodiversity of plants(assessed using vegetation plots)and arthropods(collected with Malaise traps,analyzed using metabarcoding)and productivity(tree growth,determined using dendrochronology)in protected and non-protected oak(Quercus spp.)forests along a latitudinal gradient(55.6°N–60.8°N)in Sweden.We also compare historical,recent and projected future climate in the region.In contrast to established global latitudinal diversity gradients,species richness of plants and arthropods increased northwards,possibly reflecting recent climate-induced community redistributions,but neither was higher in protected than in non-protected areas,nor associated with contemporary ground temperature.Species composition of arthropods also did not differ between protected and non-protected areas.Arthropod biomass increased with latitude,suggesting that the magnitude of cascading effects mediated via their roles as pollinators,herbivores,and prey for other trophic levels,varies geographically and will change with a moving climate.Annual growth rate of oaks(an ecosystem service in the form of biomass increase and carbon sequestration)was independent of latitude and did not differ between protected and non-protected areas.Our findings question the efficacy of contemporary designation and management of protected oak forests,and emphasize that development and implementation of modified climate smart conservation strategies is needed to safeguard ecosystem functioning,biodiversity,and recreational values of protected forest areas against future challenges.
基金the Deanship of Scientific Research at Shaqra University for funding this research work through the project number(SU-ANN-2023051).
文摘In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things(IoT)environment,leveraging the NSL-KDD dataset.To achieve high accuracy,the authors used the feature extraction technique in combination with an autoencoder,integrated with a gated recurrent unit(GRU).Therefore,the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization(PSO),and PSO has been employed for training the features.The final classification of features has been carried out by using the proposed RF-GNB random forest with the Gaussian Naïve Bayes classifier.The proposed model has been evaluated and its performance is verified with some of the standard metrics such as precision,accuracy rate,recall F1-score,etc.,and has been compared with different existing models.The generated results that detected approximately 99.87%of intrusions within the IoT environments,demonstrated the high performance of the proposed method.These results affirmed the efficacy of the proposed method in increasing the accuracy of intrusion detection within IoT network systems.
基金supported by National Key Research and Development Program of China(No.2021YFD2200405(S.R.L.))Natural Science Foundation of China(Grant No.31971653).
文摘With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality.
文摘Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.
基金National Key Research and Development Program of China,No.2023YFE0208100,No.2021YFC3000201Natural Science Foundation of Henan Province,No.232300420165。
文摘The Qinba Mountains are climatically and ecologically recognized as the north-south transitional zone of China.Analysis of its phenology is critical for comprehending the response of vegetation to climatic change.We retrieved the start of spring phenology(SOS)of eight forest communities from the MODIS products and adopted it as an indicator for spring phenology.Trend analysis,partial correlation analysis,and GeoDetector were employed to reveal the spatio-temporal patterns and climatic drivers of SOS.The results indicated that the SOS presented an advance trend from 2001 to 2020,with a mean rate of−0.473 d yr^(−1).The SOS of most forests correlated negatively with air temperature(TEMP)and positively with precipitation(PRE),suggesting that rising TEMP and increasing PRE in spring would forward and delay SOS,respectively.The dominant factors influencing the sensitivity of SOS to climatic variables were altitude,forest type,and latitude,while the effects of slope and aspect were relatively minor.The response of SOS to climatic factors varied significantly in space and among forest communities,partly due to the influence of altitude,slope,and aspect.
基金supported by the National Natural Science Foundation of China(No.31988102)Yunnan Province Major Program for Basic Research Project(No.202101BC070002)+1 种基金Yunnan Province Science and Technology Talents and Platform Program(No.202305AA160014)Yunnan Province Key Research and Development Program of China(No.202303AC100009)。
文摘Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the distribution areas of Moso bamboo(Phyllostachys edulis)in China to explore the effects of bamboo invasion on forest structural attributes and diameter–height allometries by comparing paired plots of bamboo,mixed bamboo-tree,and non-bamboo forests along the transects.We found that bamboo invasion decreased the mean and maximum diameter at breast height,maximum height,and total basal area,but increased the mean height,stem density,and scaling exponent for stands.Bamboo also had a higher scaling exponent than tree,particularly in mixed forests,suggesting a greater allocation of biomass to height growth.As invasion intensity increased,bamboo allometry became more plastic and decreased significantly,whereas tree allometry was indirectly promoted by increasing stem density.Additionally,a humid climate may favour the scaling exponents for both bamboo and tree,with only minor contributions from topsoil moisture and nitrogen content.The inherent superiority of diameter–height allometry allows bamboo to outcompete tree and contributes to its invasive success.Our findings provide a theoretical basis for understanding the causes and consequences of bamboo invasion.