期刊文献+
共找到1,556篇文章
< 1 2 78 >
每页显示 20 50 100
Vault predicting after implantable collamer lens implantation using random forest network based on different features in ultrasound biomicroscopy images 被引量:2
1
作者 Bin Fang Qiu-Jian Zhu +1 位作者 Hui Yang Li-Cheng Fan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第10期1561-1567,共7页
AIM:To analyze ultrasound biomicroscopy(UBM)images using random forest network to find new features to make predictions about vault after implantable collamer lens(ICL)implantation.METHODS:A total of 450 UBM images we... AIM:To analyze ultrasound biomicroscopy(UBM)images using random forest network to find new features to make predictions about vault after implantable collamer lens(ICL)implantation.METHODS:A total of 450 UBM images were collected from the Lixiang Eye Hospital to provide the patient’s preoperative parameters as well as the vault of the ICL after implantation.The vault was set as the prediction target,and the input elements were mainly ciliary sulcus shape parameters,which included 6 angular parameters,2 area parameters,and 2 parameters,distance between ciliary sulci,and anterior chamber height.A random forest regression model was applied to predict the vault,with the number of base estimators(n_estimators)of 2000,the maximum tree depth(max_depth)of 17,the number of tree features(max_features)of Auto,and the random state(random_state)of 40.0.RESULTS:Among the parameters selected in this study,the distance between ciliary sulci had a greater importance proportion,reaching 52%before parameter optimization is performed,and other features had less influence,with an importance proportion of about 5%.The importance of the distance between the ciliary sulci increased to 53% after parameter optimization,and the importance of angle 3 and area 1 increased to 5% and 8%respectively,while the importance of the other parameters remained unchanged,and the distance between the ciliary sulci was considered the most important feature.Other features,although they accounted for a relatively small proportion,also had an impact on the vault prediction.After parameter optimization,the best prediction results were obtained,with a predicted mean value of 763.688μm and an actual mean value of 776.9304μm.The R²was 0.4456 and the root mean square error was 201.5166.CONCLUSION:A study based on UBM images using random forest network can be performed for prediction of the vault after ICL implantation and can provide some reference for ICL size selection. 展开更多
关键词 random forest network ultrasound biomicroscopy images vault prediction implantable collamer lens
原文传递
Effects of aggregating forests, establishing forest road networks, and mechanization on operational efficiency and costs in a mountainous region in Japan 被引量:1
2
作者 Kazuhiro Aruga Gyo Hiyamizu +1 位作者 Chikara Nakahata Masashi Saito 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第4期747-754,共8页
We investigated forest road networks and forestry operations before and after mechanization on aggregated forestry operation sites. We developed equations to estimate densities of road networks with average slope angl... We investigated forest road networks and forestry operations before and after mechanization on aggregated forestry operation sites. We developed equations to estimate densities of road networks with average slope angles, operational efficiency of bunching operations with road network density, and average forwarding distances with operation site areas. Subsequently, we analyzed the effects of aggregating forests, establishing forest road networks, and mechanization on operational efficiency and costs. Six ha proved to be an appropriate operation site area with minimum operation expenses. The operation site areas of the forest owners' cooperative in this region aggregated approximately 6 ha and the cooperative conducted forestry operations on aggregated sites. Therefore, 6 ha would be an appropriate operation site area in this region. Regarding road network density, higher-density road networks increased operational expenses due to the higher direct operational expenses of strip road establishment. Therefore, road network density should be reduced to approximately 200 m. 展开更多
关键词 aggregating forests establishing forest road networks MECHANIZATION operational efficiency COSTS
在线阅读 下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:14
3
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification Algorithms NON-PARAMETRIC K-Nearest-Neighbor Neural networks Random forest Support Vector Machines
在线阅读 下载PDF
Rainfall-runoff modeling for storm events in a coastal forest catchmen t using neural networks
4
作者 WANG Yi HE Bin 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期68-73,共6页
The process of transformation of rainfall into runoff over a catchment is very complex and highly nonlinear and exhibits both tempor al and spatial variabilities. In this article, a rainfall-runoff model using th e ar... The process of transformation of rainfall into runoff over a catchment is very complex and highly nonlinear and exhibits both tempor al and spatial variabilities. In this article, a rainfall-runoff model using th e artificial neural networks (ANN) is proposed for simula ting the runoff in storm events. The study uses the data from a coa stal forest catchment located in Seto Inland Sea, Japan. This article studies the accuracy of the short-term rainfall forecast obta ined by ANN time-series analysis techniques and using antecedent rainfa ll depths and stream flow as the input information. The verification results from the proposed model indicate that the approach of ANN rai nfall-runoff model presented in this paper shows a reasonable agreement in rainfall-runoff modeling with high accuracy. 展开更多
关键词 降雨径流模型 暴风雨 沿海林 集水 神经网络
在线阅读 下载PDF
Forest Fire Detection Using Artificial Neural Network Algorithm Implemented in Wireless Sensor Networks 被引量:1
5
作者 Yongsheng Liu Yansong Yang +1 位作者 Chang Liu Yu Gu 《ZTE Communications》 2015年第2期12-16,共5页
A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (... A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi- criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi-criteria detection is implemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module. 展开更多
关键词 forest fire detection artificial neural network wireless sensor network
在线阅读 下载PDF
BP neural networks and random forest models to detect damage by Dendrolimus punctatus Walker 被引量:8
6
作者 Zhanghua Xu Xuying Huang +4 位作者 Lu Lin Qianfeng Wang Jian Liu Kunyong Yu Chongcheng Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期107-121,共15页
The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four exper... The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four experimental areas in Sanming City,Jiangle County,Sha County and Yanping District in Fujian Province,sample data on pest damage in 182 sets of Dendrolimus punctatus were collected.The data were randomly divided into a training set and testing set,and five duplicate tests and one eliminating-indicator test were done.Based on the characterization analysis of the host for D.punctatus damage,seven characteristic indicators of ground and remote sensing including leaf area index,standard error of leaf area index(SEL)of pine forest,normalized difference vegetation index(NDVI),wetness from tasseled cap transformation(WET),green band(B2),red band(B3),near-infrared band(B4)of remote sensing image are obtained to construct BP neural networks and random forest models of pest levels.The detection results of these two algorithms were comprehensively compared from the aspects of detection precision,kappa coefficient,receiver operating characteristic curve,and a paired t test.The results showed that the seven indicators all were responsive to pest damage,and NDVI was relatively weak;the average pest damage detection precision of six tests by BP neural networks was 77.29%,the kappa coefficient was 0.6869 and after the RF algorithm,the respective values were 79.30%and 0.7151,showing that the latter is more optimized,but there was no significant difference(p>0.05);the detection precision,kappa coefficient and AUC of the RF algorithm was higher than the BP neural networks for three pest levels(no damage,moderate damage and severe damage).The detection precision and AUC of BP neural networks were a little higher for mild damage,but the difference was not significant(p>0.05)except for the kappa coefficient for the no damage level(p<0.05).An"over-fitting"phenomenon tends to occur in BP neural networks,while RF method is more robust,providing a detection effect that is better than the BP neural networks.Thus,the application of the random forest algorithm for pest damage and multilevel dispersed variables is thus feasible and suggests that attention to the proportionality of sample data from various categories is needed when collecting data. 展开更多
关键词 BP neural networks Detection precision Kappa coefficient Pine moth Random forest ROC curve
在线阅读 下载PDF
基于Isolation Forest算法的10 kV配电网故障自动定位研究
7
作者 蔡林宏 陆曦 《电工技术》 2025年第S1期158-159,共2页
随着电网智能化程度的提高,对配电网络进行故障诊断是一个迫切需要解决的问题。针对10 kV配电网络,以孤立森林为研究对象,研究其在故障发生前和发生后的准确定位。研究表明,在高噪音、复杂电网数据背景下,孤立森林算法具有很好的异常检... 随着电网智能化程度的提高,对配电网络进行故障诊断是一个迫切需要解决的问题。针对10 kV配电网络,以孤立森林为研究对象,研究其在故障发生前和发生后的准确定位。研究表明,在高噪音、复杂电网数据背景下,孤立森林算法具有很好的异常检测性能。 展开更多
关键词 孤立森林算法 配电网 故障定位 特征提取 智能电网
在线阅读 下载PDF
STATA软件network模块在两分类数据网络meta分析中的应用 被引量:7
8
作者 郑亮 兰琴 +3 位作者 周晓慧 林芳 孙静 范慧敏 《同济大学学报(医学版)》 CAS 2018年第3期119-122,共4页
在循证医学领域中网络meta分析(network meta-analysis,NMA)受到了越来越多的重视。本研究将从netw ork模块安装与应用的角度对两分类数据资料的NMA如何在Stata中实现加以介绍,并举例说明其具体的操作步骤。(1)完成Stata软件中metan模... 在循证医学领域中网络meta分析(network meta-analysis,NMA)受到了越来越多的重视。本研究将从netw ork模块安装与应用的角度对两分类数据资料的NMA如何在Stata中实现加以介绍,并举例说明其具体的操作步骤。(1)完成Stata软件中metan模块的安装;(2)完成network模块的安装;(3)介绍network模块其他几种安装方式;(4)举例说明NMA结果的生成以及如何进行解读;(5)介绍其他NMA结果的实现。NMA是一种实现间接比较的便捷且有效方法,同时可以较为清晰地通过一致性、不一致性评估、网状关系图、森林图以及校正漏斗图等来定量或定性地体现合并效应以及比较结果。 展开更多
关键词 循证医学 网络meta分析 森林图 校正漏斗图
暂未订购
电子鼻茶叶无损分类的传感器温度漂移噪声补偿
9
作者 蔡旻昊 徐赛 +1 位作者 陆华忠 周星星 《中国农机化学报》 北大核心 2026年第1期325-330,345,共7页
电子鼻在环境温度影响下会出现气体数据漂移现象,传感器在特征优化等流程中,可能会受到漂移因素的影响,因此提出一种部分补偿的去漂移补偿方式,在减少补偿模型特征复杂度的同时,保留被漂移因素影响较小的原传感器数据集共同参与分类。... 电子鼻在环境温度影响下会出现气体数据漂移现象,传感器在特征优化等流程中,可能会受到漂移因素的影响,因此提出一种部分补偿的去漂移补偿方式,在减少补偿模型特征复杂度的同时,保留被漂移因素影响较小的原传感器数据集共同参与分类。通过构建3种不同的补偿数学模型,对比常规的补偿流程和部分补偿流程的结果差异,证明部分补偿流程能够有效提高电子鼻在深度学习模型中的抗漂移能力,筛选出最佳的补偿模型。结果表明,最佳组合为随机森林的部分补偿组合,训练集和测试集的拟合系数R2分别达到0.94、0.89,均方根误差RMSE分别为0.14、0.20,茶叶分类精度分别提高至98%、96%。 展开更多
关键词 电子鼻 温度补偿 茶叶分类 神经网络 随机森林
在线阅读 下载PDF
基于iForest-BiLSTM-Attention的数据库负载预测方法 被引量:7
10
作者 姬莉霞 赵耀 +2 位作者 马郑祎 赵润哲 张晗 《郑州大学学报(理学版)》 CAS 北大核心 2022年第6期66-73,共8页
针对数据库负载预测中物理资源的变化导致预测失效,模型易对异常数据敏感和未关注序列变化中潜在的加权隐层特征状态导致预测精度低等问题,在长短期记忆网络模型的基础上提出一种基于iForest-BiLSTM-Attention的数据库负载预测方法。首... 针对数据库负载预测中物理资源的变化导致预测失效,模型易对异常数据敏感和未关注序列变化中潜在的加权隐层特征状态导致预测精度低等问题,在长短期记忆网络模型的基础上提出一种基于iForest-BiLSTM-Attention的数据库负载预测方法。首先,增加数据库基准规范内部指标,解决因物理资源改变而导致的传统指标预测失效问题;其次,建立多个孤立树,整合为孤立森林,评估样本异常分数并筛出异常数据进行热卡填充;最后,结合注意力机制与双向长短期记忆网络计算隐层状态以及注意力权值,并学习工作负载的形态、周期以及规律性。实验结果表明,所提方法在数据库工作负载预测精度上相比现有方法有显著提升,吞吐量和CPU利用率的R 2值分别达到0.93和0.95。 展开更多
关键词 数据库负载预测 双向长短期记忆网络 注意力机制 孤立森林
在线阅读 下载PDF
Wildfire Monitoring and Detection System Using Wireless Sensor Network: A Case Study of Tanzania 被引量:1
11
作者 Albert S. Lutakamale Shubi Kaijage 《Wireless Sensor Network》 2017年第8期274-289,共16页
This paper proposes a wildfire monitoring and detection system based on wireless sensor network. This system detects fire by monitoring surrounding temperature, humidity and smoke. Once fire is detected, a warning mes... This paper proposes a wildfire monitoring and detection system based on wireless sensor network. This system detects fire by monitoring surrounding temperature, humidity and smoke. Once fire is detected, a warning message containing probable location of that fire is immediately sent to the responsible authority over cellular network. In order for the system to be more effective, communities living near forests or national parks can send warning messages through the same system to the responsible authority using their mobile handsets once they witness wildfire or illegal activities. For the system to be fully functional, the only requirement is the availability of cellular network coverage in forests or national parks to enable short message services to take place. The system prototype is developed using Arduino microcontroller, several sensors to detect temperature, relative humidity and smoke as well as wireless network connection modules. At the control center Telerivet messaging platform is used to design the messaging service. The experimental results justify the capability of the proposed system in detecting wildfire in real time. 展开更多
关键词 WILDFIRE Monitoring Detection Wireless Sensor network forestS Cellular network COVERAGE Telerivet
暂未订购
Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China,2004-2010 被引量:12
12
作者 Xinyu Zhang Zhiwei Xu +2 位作者 Xiaomin Sun Wenyi Dong Deborah Ballantine 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第5期1007-1014,共8页
The nitrate-nitrogen(NO 3-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations,representing typical agroand forest ecosystems,were assessed using m... The nitrate-nitrogen(NO 3-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations,representing typical agroand forest ecosystems,were assessed using monitoring data collected between 2004 and 2010.Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater,and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made.Results indicated that most of the NO 3--N concentrations in groundwater from the agroand forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard:Quality Standard for Ground Water(≤ 20 mg/L).Over the study period,the average NO 3--N concentrations were significantly higher in agro-ecosystems(4.1 ± 0.33 mg/L) than in forest ecosystems(0.5 ± 0.04 mg/L).NO 3-N concentrations were relatively higher(〉 10 mg N /L) in 10 of the 43 wells sampled in the agricultural ecosystems.These elevated concentrations occurred mainly in the Ansai,Yucheng,Linze,Fukang,Akesu,and Cele field sites,which were located in arid and semiarid areas where irrigation rates are high.We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations. 展开更多
关键词 Chinese Ecosystem Research network shallow groundwater AGRICULTURAL forest ecosystems nitrate concentration
原文传递
A new sampling method in the Zagros forests using GIS(case study: Ilam forests of Iran) 被引量:1
13
作者 A.Karamshahi 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第6期2079-2085,共7页
One of the basic parameters in forest management planning is detailed knowledge of growing stock,information collected by forest inventory.Sampling methods must be accurate,inexpensive,and be easy to implement in the ... One of the basic parameters in forest management planning is detailed knowledge of growing stock,information collected by forest inventory.Sampling methods must be accurate,inexpensive,and be easy to implement in the field.This study presents a new sampling method called branching transect for use in the Iranian Zagros forests and similar forests.Features of the new method include greater accuracy,easy implementation in nature,simplicity of statistical calculations,and low cost.In this method,transect is used,which includes some subtransects(side branches).The length of the main transect,side branches,number of trees measured in each side branch,and the number of sub-branches in this method are changeable based on homogeneity,heterogeneity,and density of a forest.In this study,based on the density and heterogeneity of the forest area studied,20-m transects with four and eight side branches were used.Sampling plots(Transects)in four inventory networks(100 m×100 m,100 m×150 m,150 m×150 m and 100 m×200 m)were implemented in the GIS environment.The results of this sampling method were compared to the results of total inventory(100%count)in terms of accuracy,precision(t-test),and inventory error percentage.Branching transect results were statistially similar to total inventory counts in all cases.The results show that this method of estimating density and canopy per hectare can be used in Zagros forests and similar forests. 展开更多
关键词 Branching TRANSECT CANOPY DENSITY network Sampling methods ZAGROS forestS
在线阅读 下载PDF
基于RF特征提取和TCN-BiGRU模型的短期光伏发电功率预测 被引量:2
14
作者 刘毅力 陈园园 《太阳能学报》 北大核心 2025年第7期682-689,共8页
为解决目前光伏发电功率预测模型输入数据冗余和单一模型预测精度不高的问题,构建一种分季节基于随机森林(RF)进行特征提取的时序卷积网络(TCN)、双向门控单元循环网络(BiGRU)和缩放点积注意力机制(SDA)结合的短期光伏发电功率预测模型... 为解决目前光伏发电功率预测模型输入数据冗余和单一模型预测精度不高的问题,构建一种分季节基于随机森林(RF)进行特征提取的时序卷积网络(TCN)、双向门控单元循环网络(BiGRU)和缩放点积注意力机制(SDA)结合的短期光伏发电功率预测模型。首先,采用RF计算各气象特征对发电功率的贡献度以选取关键特征;然后,将关键气象特征和原始功率数据用于结合SDA机制的TCN-BiGRU组合模型进行预测;最后,根据实际算例对所提组合模型进行验证。结果表明,提出的组合模型与其他模型相比具有更高的预测精度。 展开更多
关键词 特征提取 随机森林 神经网络 光伏发电预测 SDA机制
原文传递
3-D Grid-Based Localization Technique in Mobile Sensor Networks
15
作者 Jia Li Lei Sun +1 位作者 Wai Yee Leong Peter H J Chong 《Wireless Sensor Network》 2010年第11期828-837,共10页
Considering the environmental protection, forest fire becomes a more and more serious problem and requires more concerns. This paper provides an efficient method for fire monitoring and detection in forests using wire... Considering the environmental protection, forest fire becomes a more and more serious problem and requires more concerns. This paper provides an efficient method for fire monitoring and detection in forests using wireless sensor network technology. The proposed technique estimates the location of a sensor node based on the current set of hop-count values, which are collected through the anchor nodes’ broadcast. Our algorithm incorporates two salient features;grid-based output and event-triggering mechanism, to improve the accuracy while reducing the power consumption. Through the computer simulation, the output region obtained from our algorithm can always cover the target node. In addition, the algorithm was implemented and tested with a set of Crossbow sensors. Experimental results demonstrated the high feasibility and worked well in real environment. 展开更多
关键词 WIRELESS Mobile Sensor networks forest FIRE Detection LOCALIZATION TECHNIQUE
暂未订购
基于测井参数的延川南气田煤层含气量预测模型 被引量:1
16
作者 刘晓 陈贞龙 +2 位作者 杨松 李松 常闯 《地质通报》 北大核心 2025年第5期792-800,共9页
【研究目的】煤层含气量是煤层气资源评价与开发的核心参数,但当前含气量预测模型普遍存在精度不足、泛化能力弱等问题,制约着煤层气的勘探开发。【研究方法】基于延川南气田煤层含气量的测井响应特征,利用MIV(Mean Impact Value)方法... 【研究目的】煤层含气量是煤层气资源评价与开发的核心参数,但当前含气量预测模型普遍存在精度不足、泛化能力弱等问题,制约着煤层气的勘探开发。【研究方法】基于延川南气田煤层含气量的测井响应特征,利用MIV(Mean Impact Value)方法优选测井参数,引入BP神经网络与随机森林思想,建立高精度煤层含气量预测模型。【研究结果】相比传统的多元线性回归模型,BP神经网络模型与随机森林模型的预测精度有明显提升,其中随机森林模型预测精度更高。【结论】随机森林模型更适用于研究区煤层含气量的预测,基于模型预测结果,研究区煤层含气量的分布范围为4.84~21.83 m^(3)/t,平均为11.63 m^(3)/t;平面上,煤层含气量由东南向西北逐渐升高,变化规律与煤层埋.深规律大体一致;纵向上,随着埋深的增大,煤层含气量逐渐升高,但含气量分布的离散程度增大。 展开更多
关键词 含气量 测井参数 MIV BP神经网络 随机森林
在线阅读 下载PDF
四湖总干渠溶解氧季节性异常特征与成因分析 被引量:3
17
作者 黎睿 汤显强 +4 位作者 胡艳平 王丹阳 郭栋帆 翟文亮 杨勇 《中国环境科学》 北大核心 2025年第5期2816-2826,共11页
平原水网地区水体溶解氧(DO)偏低已成为一个普遍的现象.为揭示平原水网地区溶解氧异常成因,以全国最重要的淡水养殖区汉江流域四湖总干渠为例,分析了2010~2023年四湖总干渠水质时空变化规律,调查监测了四湖总干渠DO、水体和沉积物中营... 平原水网地区水体溶解氧(DO)偏低已成为一个普遍的现象.为揭示平原水网地区溶解氧异常成因,以全国最重要的淡水养殖区汉江流域四湖总干渠为例,分析了2010~2023年四湖总干渠水质时空变化规律,调查监测了四湖总干渠DO、水体和沉积物中营养盐空间分布特征,采用随机森林模型等方法分析了水温、氨氮及流量等参数对水体溶解氧的影响.结果表明:四湖总干渠水体溶解氧(DO)存在明显的季节性波动,年内呈“V”型分布,汛期DO浓度相对较低,非汛期基本满足地表水Ⅲ类水要求.2021年四湖总干渠水体缺氧(DO<2mg/L)状况突出,运粮湖、新河村和新滩断面年缺氧天数分别为79,116和96d.汛期四湖总干渠在中上游河段存在明显的低氧区,DO浓度仅为2.61~3.22mg/L.自2010年以来四湖总干渠水质长期处于Ⅳ~劣Ⅴ类,主要超标因子为DO、高锰酸盐指数、氨氮、总磷.四湖总干渠沉积物总氮含量为857.70~2846.87mg/kg,TP含量为545.99~2475.59mg/kg,沉积物处于轻-中度污染状态,支渠污染重于干渠.随机森林模型能够较好的预测水体DO,拟合系数R2达0.995,均方根误差RMSE仅为0.2085.随机森林模型分析表明水温对DO影响相对重要性均超过35%,其他影响因素依次为pH值、氨氮、电导率、浊度、流量等.为改善四湖总干渠DO汛期异常状况,需加强流域系统治理,改善虾稻和水产养殖排水水质,优化泵站调度运行方式. 展开更多
关键词 溶解氧 缺氧 平原水网区 随机森林 四湖总干渠
在线阅读 下载PDF
基于改进孤立森林的大规模网络入侵攻击检测研究 被引量:1
18
作者 徐伟 冷静 《现代电子技术》 北大核心 2025年第15期98-102,共5页
针对网络规模较大导致的检测过程性能波动大、潜在攻击行为识别精度较差等问题,文中提出基于改进孤立森林的大规模网络入侵攻击检测方法。构建大规模网络入侵攻击检测框架,采集并预处理大规模网络数据,基于关联的特征选择方法提取大规... 针对网络规模较大导致的检测过程性能波动大、潜在攻击行为识别精度较差等问题,文中提出基于改进孤立森林的大规模网络入侵攻击检测方法。构建大规模网络入侵攻击检测框架,采集并预处理大规模网络数据,基于关联的特征选择方法提取大规模网络流量特征,输送至入侵攻击检测模块。入侵攻击检测模块采用改进孤立森林算法,通过隔离树遍历网络流量特征数据计算特征数据异常得分,准确隔离异常数据点,实现攻击检测。一旦检测出异常点,日志告警模块发送警报,并在规则库中记录相应的规则。实验结果证明,该方法的异常分值计算结果均在0.79~0.99,能够准确识别入侵攻击流量,并且检测准确率均超过99%。 展开更多
关键词 改进孤立森林 大规模网络 入侵攻击 分割点 流量特征 异常得分 特征选择
在线阅读 下载PDF
国有林区防火应急道路路网规划设计决策因素 被引量:2
19
作者 薄韬 《林业科技情报》 2025年第3期41-43,共3页
为了更好地搞好国有林区道路规划、设计工作,选择林区道路网规划、设计的重要问题为研究对象。阐述如何更好地完成国有林区道路规划、设计工作的具体措施和建议。
关键词 防火应急道路 道路网络规划 林道网密度 国有林区
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测 被引量:1
20
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部