期刊文献+
共找到399篇文章
< 1 2 20 >
每页显示 20 50 100
Assessment of underlying topography and forest height inversion based on TomoSAR methods 被引量:1
1
作者 Chuanjun Wu Xinwei Yang +3 位作者 Yanghai Yu Stefano Tebaldini Lu Zhang Mingsheng Liao 《Geo-Spatial Information Science》 CSCD 2024年第2期311-326,共16页
Due to the strong penetrability,long-wavelength synthetic aperture radar(SAR)can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media.SAR tomography(TomoSAR)technology can resy... Due to the strong penetrability,long-wavelength synthetic aperture radar(SAR)can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media.SAR tomography(TomoSAR)technology can resynthesize aperture perpendicular to the slant-range direction and then obtain the tomographic profile consisting of power distribution of different heights,providing a powerful technical tool for reconstructing the three-dimensional structure of the penetrable ground objects.As an emerging technology,it is different from the traditional interferometric SAR(InSAR)technology and has advantages in reconstructing the three-dimensional structure of the illuminated media.Over the past two decades,many TomoSAR methods have been proposed to improve the vertical resolution,aiming to distinguish the locations of different scatters in the unit pixel.In order to cope with the forest mission of European Space Agency(ESA)that is designed to provide P-band SAR measurements to determine the amount of biomass and carbon stored in forests,it is necessary to systematically evaluate the performance of forest height and underlying topography inversion using TomoSAR technology.In this paper,we adopt three typical algorithms,namely,Capon,Multiple Signal Classification(MUSIC),and Compressed Sensing(CS),to evaluate the performance in forest height and underlying topography inversion.The P-band airborne full-polarization(FP)SAR data of LopèNational Park in the AfriSAR campaign implemented by ESA in 2016 is adopted to verify the experiment.Furthermore,we explore the effects of different baseline designs and filter methods on the reconstruction of the tomographic profile.The results show that a better tomographic profile can be obtained by using Hamming window filter and Capon algorithm in uniform baseline distribution and a certain number of acquisitions.Compared with LiDAR results,the root-mean-square error(RMSE)of forest height and underlying topography obtained by Capon algorithm is 2.17 m and 1.58 m,which performs the best among the three algorithms. 展开更多
关键词 Three-dimensional structure SAR tomography(TomoSAR) forest height underlying topography tomographic profile
原文传递
Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019:a case study in the Beijing-Tianjin-Hebei region of China 被引量:6
2
作者 Tong Sun Jianbo Qi Huaguo Huang 《Forest Ecosystems》 SCIE CSCD 2020年第4期704-715,共12页
Background:The assessment of change in forest ecosystems,especially the change of canopy heights,is essential for improving global carbon estimates and understanding effects of climate change.Spaceborne lidar systems ... Background:The assessment of change in forest ecosystems,especially the change of canopy heights,is essential for improving global carbon estimates and understanding effects of climate change.Spaceborne lidar systems provide a unique opportunity to monitor changes in the vertical structure of forests.NASA’s Ice,Cloud and Land Elevation Satellites,ICESat-1 for the period 2003 to 2009,and ICESat-2(available since 2018),have collected elevation data over the Earth’s surface with a time interval of 10 years.In this study,we tried to discover forest canopy changes by utilizing the global forest canopy height map of 2005(complete global coverage with 1 km resolution)derived from ICESat-1 data and the ATL08 land and vegetation products of 2019(sampling footprints with 17 m diameter)from ICESat-2.Results:Our study revealed a significant increase in forest canopy heights of China’s Beijing-Tianjin-Hebei region.Evaluations of unchanging areas for data consistency of two products show that the bias values decreased significantly from line-transect-level(−8.0 to 6.2 m)to site-level(^(−1).5 to 1.1 m),while RMSE values are still relatively high(6.1 to 15.2 m,10.2 to 12.0 m).Additionally,58%of ATL08 data are located in‘0m’pixels with an average height of 7.9 m,which are likely to reflect the ambitious tree planting programs in China.Conclusions:Our study shows that it is possible,with proper calibrations,to use ICESat-1 and-2 products to detect forest canopy height changes in a regional context.We expect that the approach presented in this study is potentially suitable to derive a fine-scale map of global forest change. 展开更多
关键词 forest height Global map ATL08 products Comparison PLANTATION
在线阅读 下载PDF
Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern China 被引量:5
3
作者 Wenli Huang Wankun Min +4 位作者 Jiaqi Ding Yingchun Liu Yang Hu Wenjian Ni Huanfeng Shen 《Forest Ecosystems》 SCIE CSCD 2022年第1期57-70,共14页
Background:Accurate mapping of forest canopy heights at a fine spatial resolution over large geographical areas is challenging.It is essential for the estimation of forest aboveground biomass and the evaluation of for... Background:Accurate mapping of forest canopy heights at a fine spatial resolution over large geographical areas is challenging.It is essential for the estimation of forest aboveground biomass and the evaluation of forest ecosystems.Yet current regional to national scale forest height maps were mainly produced at coarse-scale.Such maps lack spatial details for decision-making at local scales.Recent advances in remote sensing provide great opportunities to fill this gap.Method:In this study,we evaluated the utility of multi-source satellite data for mapping forest heights over Hunan Province in China.A total of 523 plot data collected from 2017 to 2018 were utilized for calibration and validation of forest height models.Specifically,the relationships between three types of in-situ measured tree heights(maximum-,averaged-,and basal area-weighted-tree heights)and plot-level remote sensing metrics(multispectral,radar,and topo variables from Landsat,Sentinel-1/PALSAR-2,and SRTM)were analyzed.Three types of models(multilinear regression,random forest,and support vector regression)were evaluated.Feature variables were selected by two types of variable selection approaches(stepwise regression and random forest).Model parameters and model performances for different models were tuned and evaluated via a 10-fold cross-validation approach.Then,tuned models were applied to generate wall-to-wall forest height maps for Hunan Province.Results:The best estimation of plot-level tree heights(R2 ranged from 0.47 to 0.52,RMSE ranged from 3.8 to 5.3 m,and rRMSE ranged from 28%to 31%)was achieved using the random forest model.A comparison with existing forest height maps showed similar estimates of mean height,however,the ranges varied under different definitions of forest and types of tree height.Conclusions:Primary results indicate that there are small biases in estimated heights at the province scale.This study provides a framework toward establishing regional to national scale maps of vertical forest structure. 展开更多
关键词 forest canopy height Hunan province Landsat ARD PALSAR-2 Sentinel-1
在线阅读 下载PDF
Forest terrain and canopy height estimation using stereo images and spaceborne LiDAR data from GF-7 satellite 被引量:2
4
作者 Liming Du Yong Pang +4 位作者 Wenjian Ni Xiaojun Liang Zengyuan Li Juan Suarez Wei Wei 《Geo-Spatial Information Science》 CSCD 2024年第3期811-821,共11页
Accurate estimation of forest terrain and canopy height is crucial for timely understanding of forest growth.Gao Fen-7(GF-7)Satellite is China’s first sub-meter-level three-dimensional(3D)mapping satellite for civili... Accurate estimation of forest terrain and canopy height is crucial for timely understanding of forest growth.Gao Fen-7(GF-7)Satellite is China’s first sub-meter-level three-dimensional(3D)mapping satellite for civilian use,which was equipped with a two-line-array stereo mapping camera and a laser altimeter system that can provide stereo images and full waveform LiDAR data simultaneously.Most of the existing studies have concentrated on evaluating the accuracy of GF-7 for topographic survey in bare land,but few have in-depth studied its ability to measure forest terrain elevation and canopy height.The purpose of this study is to evaluate the potential of GF-7 LiDAR and stereo image for forest terrain and height measurement.The Airborne Laser Scanning(ALS)data were utilized to generate reference terrain and forest vertical information.The validation test was conducted in Pu’er City,Yunnan Province of China,and encouraging results have obtained.The GF-7 LiDAR data obtained the accuracy of forest terrain elevation with RMSE of 8.01 m when 21 available laser footprints were used for results verification;meanwhile,when it was used to calculate the forest height,R^(2)of 0.84 and RMSE of 3.2 m were obtained although only seven effective footprints were used for result verification.The canopy height values obtained from GF-7 stereo images have also been proven to have high accuracy with the resolution of 20 m×20 m compared with ALS data(R2=0.88,RMSE=2.98 m).When the results were verified at the forest sub-compartment scale that taking into account the forest types,further higher accuracy(R^(2)=0.96,RMSE=1.23 m)was obtained.These results show that GF-7 has considerable application potential in forest resources monitoring. 展开更多
关键词 Gao Fen-7(GF-7) spaceborne LiDAR stereo image Airborne Laser Scanning(ALS) forest height Pu’er
原文传递
Forest Height Extraction Using GF-7 Very High-Resolution Stereoscopic Imagery and Google Earth Multi-Temporal Historical Imagery
5
作者 Wenjian Ni Zijia Li +6 位作者 Qiang Wang Zhiyu Zhang Qingwang Liu Yong Pang Yating He Zengyuan Li Guoqing Sun 《Journal of Remote Sensing》 2024年第1期344-355,共12页
With the advent of very high-resolution(VHR)imaging satellites,it is possible to measure the heights of forest stands or even individual trees more accurately.However,the accurate geometric processing of VHR images de... With the advent of very high-resolution(VHR)imaging satellites,it is possible to measure the heights of forest stands or even individual trees more accurately.However,the accurate geometric processing of VHR images depends on ground control points(GCPs).Collecting GCPs through fieldwork is time-consuming and labor-intensive,which presents great challenges for regional applications in remote or mountainous regions,particularly for international applications.This study proposes a promising approach that leverages GF-7 VHR stereoscopic images and Google Earth’s multi-temporal historical imagery to accurately extract forest heights without the need for fieldworks.Firstly,an algorithm is proposed to collect GCPs using Multi-temporal Averaging of historical imagery provided by Google Earth(GE),known as MAGE.Digital surface model(DSM)is then derived using GF-7 stereoscopic imagery and MAGE GCPs in Switzerland.Forest heights are finally extracted by subtracting ground surface elevations from GF-7 DSM.Results show that absolute coordinate errors of MAGE GCPs are less than 2.0 m.The root mean square error(RMSE)of forest heights extracted from GF-7 DSM,derived using the original geolocation model,is 12.3 m,and the determination coefficient(R^(2))of linear estimation model is 0.72.When the geolocation model is optimized using MAGE GCPs,the RMSE is reduced to 1.5 m and the R^(2)increases to 0.95.These results not only demonstrate the effectiveness of MAGE GCPs but,more importantly,also reveal the significance of precise geometric processing of VHR stereoscopic imagery in forest height estimations. 展开更多
关键词 forest height extraction regional applications very high resolution imagery ground control points gcps collecting forest stands multi temporal imagery stereoscopic imagery geometric processing
原文传递
Tree diversity drives understory carbon storage rather than overstory carbon storage across forest types
6
作者 Saif Ullah Jianping Wu +6 位作者 Jawad Ali Shah Xuemei Wang Yueming Lyu Zhiwen Guo Kashif Ali Deyun Chen Han Sun 《Journal of Forestry Research》 2025年第1期87-101,共15页
Although numerous studies have proposed explanations for the specific and relative effects of stand structure,plant diversity,and environmental conditions on carbon(C)storage in forest ecosystems,understanding how the... Although numerous studies have proposed explanations for the specific and relative effects of stand structure,plant diversity,and environmental conditions on carbon(C)storage in forest ecosystems,understanding how these factors collectively affect C storage in different community layers(trees,shrubs,and herbs)and forest types(mixed,broad-leaved(E),broad-leaved(M),and coniferous forest)continues to pose challenges.To address this,we used structural equation models to quantify the influence of biotic factors(mean DBH,mean height,maximum height,stem density,and basal area)and abiotic factors(elevation and canopy openness),as well as metrics of species diversity(Shannon–Wiener index,Simpson index,and Pielou’s evenness)in various forest types.Our analysis revealed the critical roles of forest types and elevation in explaining a substantial portion of variability in C storage in the overstory layer,with a moderate influence of stand factors(mean DBH and basal area)and a slightly negative impact of tree species diversity(Shannon–Wiener index).Notably,forest height emerged as the primary predictor of C storage in the herb layer.Regression relationships further highlighted the significant contribution of tree species diversity to mean height,understory C storage,and branch biomass within the forest ecosystem.Our insights into tree species diversity,derived from structural equation modeling of C storage in the overstory,suggest that the effects of tree species diversity may be influenced by stem biomass in statistical reasoning within temperate forests.Further research should also integrate tree species diversity with tree components biomass,forest mean height,understory C,and canopy openness to understand complex relationships and maintain healthy and sustainable ecosystems in the face of global climate challenges. 展开更多
关键词 forest types forest height Stand factors ELEVATION forest strata
在线阅读 下载PDF
Forest biomass is strongly shaped by forest height across boreal to tropical forests in China 被引量:2
7
作者 Xian Wu Xiangping Wang +2 位作者 Yulian Wu Xinli Xia Jingyun Fang 《Journal of Plant Ecology》 SCIE 2015年第6期559-567,共9页
Forest height is a major factor shaping geographic biomass patterns,and there is a growing dependence on forest height derived from satellite light detecting and ranging(LiDAR)to monitor large-scale biomass patterns.H... Forest height is a major factor shaping geographic biomass patterns,and there is a growing dependence on forest height derived from satellite light detecting and ranging(LiDAR)to monitor large-scale biomass patterns.However,how the relationship between forest biomass and height is modulated by climate and biotic factors has seldom been quantified at broad scales and across various forest biomes,which may be crucial for improving broad-scale biomass estimations based on satellite LiDAR.Methods We used 1263 plots,from boreal to tropical forest biomes across China,to examine the effects of climatic(energy and water avail-ability)and biotic factors(forest biome,leaf form and leaf phenol-ogy)on biomass-height relationship,and to develop the models to estimate biomass from forest height in China.Important Findings(i)Forest height alone explained 62%of variation in forest biomass across China and was far more powerful than climate and other biotic factors.(ii)However,the relationship between biomass and forest height were significantly affected by climate,forest biome,leaf phenology(evergreen vs.deciduous)and leaf form(needleleaf vs.broadleaf).among which,the effect of climate was stronger than other factors.The intercept of biomass-height relationship was more affected by precipitation while the slope more affected by energy availability.(iii)When the effects of climate and biotic factors were considered in the models,geographic biomass patterns could be well predicted from forest height with an r2 between 0.63 and 0.78(for each forest biome and for all biomes together).For most biomes,forest biomass could be well predicted with simple models includ-ing only forest height and climate.(iv)We provided the first broad-scale models to estimate biomass from forest height across China,which can be utilized by future LiDAR studies.(v)our results suggest that the effect of climate and biotic factors should be carefully considered in models estimating broad-scale forest biomass patterns with satellite LiDAR. 展开更多
关键词 biomass climate forest biome forest height leaf phenology needleleaf vs.broadleaf forest
原文传递
Underlying topography and forest height estimation from SAR tomography based on a nonparametric spectrum estimation method with low sidelobes
8
作者 Youjun Wang Xing Peng +4 位作者 Qinghua Xie Xinwu Li Xiaomin Luo Yanan Du Bing Zhang 《International Journal of Digital Earth》 SCIE EI 2022年第1期2184-2201,共18页
The underlying topography and forest height play an indispensable role in many fields,including geomorphology,civil engineering construction,forest investigation,and the modeling of natural disasters.As a new microwav... The underlying topography and forest height play an indispensable role in many fields,including geomorphology,civil engineering construction,forest investigation,and the modeling of natural disasters.As a new microwave remote sensing technology with three-dimensional imaging capability,synthetic aperture radar(SAR)tomography(TomoSAR)has already been proven to be an important tool for underlying topography and forest height estimation.Many spectrum estimation methods have now been proposed for TomoSAR.However,most of the commonly used methods are susceptible to noise and inevitably produce sidelobes,resulting in a reduced accuracy for the inversion of forest structural parameters.In this paper,to solve this problem,a nonparametric spectrum estimation method with low sidelobes-the G-Pisarenko method-is introduced.This method performs a logarithmic operation on the covariance matrix to obtain the main scattering characteristics of the objects of interest while suppressing the noise as much as possible.The effectiveness of the proposed method is demonstrated by the use of both simulated data and P-band airborne SAR data from a tropical forest region in Gabon,Africa.The results show that the proposed method can reduce the sidelobes and improve the estimation accuracy for the underlying topography and forest height. 展开更多
关键词 Underlying topography forest height TomoSAR G-Pisarenko method SIDELOBES
原文传递
Inversion of forest canopy height in south of China by integrating GLAS and MERSI:The case of Jiangxi province in China 被引量:4
9
作者 DONG Lixin LI Guicai TANG Shihao 《遥感学报》 EI CSCD 北大核心 2011年第6期1301-1314,共14页
For inversion of forest canopy height in large scale,it is of great significance to integrate space-borne Lidar and optical remote sensing data effectively.The homemade satellite will provide a plentiful datum for for... For inversion of forest canopy height in large scale,it is of great significance to integrate space-borne Lidar and optical remote sensing data effectively.The homemade satellite will provide a plentiful datum for forest ecological researches.In this paper,the processing of GLAS waveform data and the algorithm of forest canopy height in different terrain were implemented.The GLAS+MERSI joint inversion model of canopy height of different forest types in regional scale was established and used to map the forest canopy height of Jiangxi province.Overall,high accuracy was observed for the canopy height estimated by GLAS+MERSI joint inversion model with R^(2)=0.733 for the needle-leaf forest,following by the broadleaf forest(R^(2)=0.610).The results showed that the established model was workable.It was found that the GLAS+MERSI joint inversion model which considers the optical remote sensing of biophysical parameters can provide good estimates of forest canopy height at regional scale.The space distribution characteristic was found consistent with the data of land cover. 展开更多
关键词 forest canopy height LIDAR GLAS FY3A-MERSI
原文传递
Comparing Tree Heights among Montane Forest Blocks of Kenya Using LiDAR Data from GLAS 被引量:1
10
作者 Mwangi James Kinyanjui Ngugi John Kigomo +7 位作者 Kamau Miriam Wambui Nderitu Joel Kariuki Nyanjui Charles Nganga John Macharia Ojijo William Odidi Ashiono Fredrick Owate Augustine Omamo Ndirangu Monicah Katumbi 《Open Journal of Forestry》 2015年第1期80-89,共10页
This study was designed to use LiDAR data to research tree heights in montane forest blocks of Kenya. It uses a completely randomised block design to asses if differences exist in forest heights: 1) among montane fore... This study was designed to use LiDAR data to research tree heights in montane forest blocks of Kenya. It uses a completely randomised block design to asses if differences exist in forest heights: 1) among montane forest blocks, 2) among Agro ecological zones (AEZ) within each forest block and 3) between similar AEZ in different forest blocks. Forest height data from the Geoscience Laser Altimeter System (GLAS) on the Ice Cloud and Land Elevation Satellite (ICE-SAT) for the period 2003-2009 was used for 2146 circular plots, of 0.2 - 0.25 ha in size. Results indicate that, tree height is largely influenced by Agro ecological conditions and the wetter zones have taller trees in the upper, middle and lower highlands. In the upper highland zones of limited human activity, tree heights did not vary among forest blocks. Variations in height among forest blocks and within forest blocks were exaggerated in regions of active human intervention. 展开更多
关键词 MONTANE forestS Tree height Agro Ecological ZONES
暂未订购
Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests 被引量:8
11
作者 Siavash Kalbi Asghar Fallah +2 位作者 Pete Bettinger Shaban Shataee Rassoul Yousefpour 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1195-1204,共10页
Height–diameter relationships are essential elements of forest assessment and modeling efforts.In this work,two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Orient... Height–diameter relationships are essential elements of forest assessment and modeling efforts.In this work,two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Oriental beech(Fagus orientalis Lipsky) in the Hyrcanian Forest in Iran.The predictive performance of these models was first assessed by different evaluation criteria: adjusted R^2(R^2_(adj)),root mean square error(RMSE),relative RMSE(%RMSE),bias,and relative bias(%bias) criteria.The best model was selected for use as the base mixed-effects model.Random parameters for test plots were estimated with different tree selection options.Results show that the Chapman–Richards model had better predictive ability in terms of adj R^2(0.81),RMSE(3.7 m),%RMSE(12.9),bias(0.8),%Bias(2.79) than the other models.Furthermore,the calibration response,based on a selection of four trees from the sample plots,resulted in a reduction percentage for bias and RMSE of about 1.6–2.7%.Our results indicate that the calibrated model produced the most accurate results. 展开更多
关键词 Random effects Tree height CALIBRATION Sangdeh forest Chapman–Richards model Oriental beech
在线阅读 下载PDF
基于紫椴天然林解析木的单木生长模型构建
12
作者 刘洋 崔玉涛 《林业勘查设计》 2025年第6期37-41,共5页
单木生长模型构建有利于科学预估林木生长动态,以吉林省安图县89株紫椴天然林解析木数据为基础,选择5种常见的单木生长模型作为待选模型,分别拟合紫椴天然林胸径与林木年龄之间的单木生长模型、树高与林木年龄之间的单木生长模型,根据... 单木生长模型构建有利于科学预估林木生长动态,以吉林省安图县89株紫椴天然林解析木数据为基础,选择5种常见的单木生长模型作为待选模型,分别拟合紫椴天然林胸径与林木年龄之间的单木生长模型、树高与林木年龄之间的单木生长模型,根据总相对误差(RS)、平均相对误差(EE)、平均相对误差绝对值(RMA)、预估精度(P)和方差均方(MSE)选择最优生长模型。结果表明,胸径最优生长模型为逻辑斯蒂模型,树高最优生长模型为幂函数模型。最终,根据构建的紫椴天然林解析木单木最优生长模型对安图县紫椴天然林不同龄组的单木胸径和树高进行预估,旨在为该地区紫椴天然林林木生长规律的研究提供参考。 展开更多
关键词 紫椴天然林 胸径生长模型 树高生长模型 安图县
在线阅读 下载PDF
基于TLS数据的落叶松–水曲柳混交林单木因子提取及树高模型构建研究 被引量:1
13
作者 崔译今 贾炜玮 +2 位作者 王帆 郭昊天 李丹丹 《西南林业大学学报(自然科学)》 北大核心 2025年第2期142-150,共9页
以孟家岗林场1 hm^(2)落叶松水与曲柳混交林样地为研究对象,利用等株径级标准木法把林木分为优势木、平均木、被压木3个等级,然后以人工实测值作为参考值,分别分析利用TLS提取2种树种的3种等级木单木因子的精度,最后采用TLS数据提取的... 以孟家岗林场1 hm^(2)落叶松水与曲柳混交林样地为研究对象,利用等株径级标准木法把林木分为优势木、平均木、被压木3个等级,然后以人工实测值作为参考值,分别分析利用TLS提取2种树种的3种等级木单木因子的精度,最后采用TLS数据提取的单木因子构建树高模型。筛选出2种树种最优基础树高模型,并进一步评价和比较以林木分级为哑变量构建的树高模型。结果表明:针对本研究选取的水落混交林样地,点云数据与实测数据单木匹配结果中,落叶松匹配精度为92.79%,水曲柳为92.25%;2个树种的胸径提取精度达到97%以上,且胸径提取精度优势木>平均木>被压木,2个树种的树高提取精度达到95%以上,落叶松树高提取精度平均木>优势木>被压木;水曲柳树高提取精度优势木>平均木>被压木。使用TLS数据构建的基础树高模型中,拟合落叶松效果最好的是Logistic模型(R^(2)=0.783 0、RMSE=1.951 6),拟合水曲柳效果最好的是Gompertz模型(R^(2)=0.724 8、RMSE=1.953 6),因此以Logistic模型、Gompertz模型分别为2个树种基于TLS数据构建的最优基础模型,最后2个树种采用以林木分级为哑变量构建的模型R^(2)分别为0.790 7、0.731 2。TLS技术对水落混交林样地单木匹配率很高,单木因子提取精度较好,基于TLS数据所构建的以林木分级为哑变量的模型,在预测树木高度和胸径的生长差异方面表现优于基础模型,具有更好的预测精度和适应性,可以为该地区水落混交林的林业经营提供参考。 展开更多
关键词 落叶松 水曲柳 混交林 地基激光雷达 树高 哑变量模型
在线阅读 下载PDF
基于GEDI波形数据的不同季节森林冠层高度估测 被引量:1
14
作者 蔡龙涛 何家胜 +3 位作者 吴军 韩雪蓉 王玉 邢泽坤 《农业机械学报》 北大核心 2025年第4期325-334,共10页
为解决星载LiDAR(Light laser detection and ranging)GEDI(Global ecosystem dynamics investigation)发射波激光脉冲难以穿透密林区森林冠层从而精准获取林下地形信息,以及在高坡度地形会增加GEDI林分冠层回波与林下地形回波重叠度进... 为解决星载LiDAR(Light laser detection and ranging)GEDI(Global ecosystem dynamics investigation)发射波激光脉冲难以穿透密林区森林冠层从而精准获取林下地形信息,以及在高坡度地形会增加GEDI林分冠层回波与林下地形回波重叠度进而难以高精度估测森林冠层高度的问题,结合冬季阔叶林落叶特性及GEDI发射波激光脉冲有强穿透性的特点,对GEDI波形长度参数按照不同季节森林构建冠层高度估测模型,分析GEDI不同百分比波形长度参数rh_aN在夏季、冬季森林冠层高度估测精度;之后引入地形坡度因子DTM数据修正森林冠层高度估测模型,分坡度估测森林冠层高度,解决由高坡度地形引起的林分冠层回波与林下地形回波重叠导致森林冠层高度估测精度偏低问题。研究结果表明,夏季森林冠层高度估测决定系数R^(2)为0.573,均方根误差(RMSE)为3.695 m;冬季估测R^(2)为0.633,RMSE为3.671 m;冬季森林冠层高度估测模型经地形坡度校正后整体估测精度R^(2)为0.709,RMSE为3.271 m。冬季森林冠层高度估测精度明显优于夏季,且引入地形坡度因子后能有效提高不同地形坡度条件下森林冠层高度估测精度。 展开更多
关键词 森林冠层高度 季节 地形坡度 GEDI
在线阅读 下载PDF
基于冠层高度遥感数据的中国温带森林年龄估算研究——以黑龙江省为例
15
作者 刘程煜 马勤 +1 位作者 周艳莲 居为民 《遥感技术与应用》 北大核心 2025年第3期557-567,共11页
森林年龄显著影响其碳汇的变化趋势,降低区域和全球森林碳汇估算的不确定性需要森林年龄分布数据。森林年龄与冠层高度紧密联系,近年来高分辨率森林冠层高度遥感数据不断产生,为森林年龄高分辨率制图创造了条件。但是,基于森林高度遥感... 森林年龄显著影响其碳汇的变化趋势,降低区域和全球森林碳汇估算的不确定性需要森林年龄分布数据。森林年龄与冠层高度紧密联系,近年来高分辨率森林冠层高度遥感数据不断产生,为森林年龄高分辨率制图创造了条件。但是,基于森林高度遥感数据的温带森林年龄高分辨率制图的可行性尚不清楚。因此,研究基于森林高度遥感数据进行温带森林年龄的估算及制图,对提升区域碳汇动态监测精度、优化森林管理策略及深化温带森林生态系统固碳机制认知具有重要意义。实验以黑龙江省为研究区,利用落叶阔叶林、常绿针叶林、落叶针叶林和混交林共1821个样地的数据,确定了描述不同森林类型冠层高度随年龄变化的最优生长方程,对样地数据进行了时间订正;随机选择70%的样地观测数据用于模型训练、其余的30%样本用于模型验证,以基于激光雷达数据生成的森林高度和环境因子(包括生长季长度、最高月平均气温和坡度)为自变量,分别采用随机森林(RF)、支持向量机(SVM)和LightGBM方法构建森林年龄估算模型;遴选最优模型,进行研究区2020年森林年龄30 m分辨率制图,分析森林年龄变化特征。结果表明:对于建模样本和验证样本,RF模型的R^(2)最高(0.77)而均方根误差(RMSE)最低(10.20),LightGBM模型次之,SVM模型R^(2)最低(0.63)而RMSE最高(11.85)。采用RF模型估算的森林年龄存在明显的空间差异,大兴安岭地区和伊春市的森林年龄显著高于其它地区,黑河市的森林年龄较低;落叶针叶林的平均年龄最高,其次为常绿针叶林和混交林,落叶阔叶林的平均年龄最低;研究区森林平均年龄为73年,其中75%的森林年龄为40~100年,17%的森林年龄大于100年,8%的森林年龄低于40年。研究表明:将森林高度遥感数据与环境因子结合,采用机器学习方法可以有效估算中国温带森林的年龄,将为区域和全球森林年龄的高分辨率遥感制图提供参考。 展开更多
关键词 森林年龄 森林高度 激光雷达 机器学习 随机森林
原文传递
联合邻域像素观测信息的单基线PolInSAR森林高度反演算法
16
作者 张兵 赵薇 +4 位作者 朱建军 宋伟东 任东风 朱洪波 胡忠超 《武汉大学学报(信息科学版)》 北大核心 2025年第8期1571-1582,共12页
目前极化合成孔径雷达干涉测量(polarimetric interferometric synthetic aperture radar,PolInSAR)技术在森林高度反演领域应用最为广泛的模型为随机地体二层散射模型(random volume over ground model,RVoG),但模型未知参数较多,基于... 目前极化合成孔径雷达干涉测量(polarimetric interferometric synthetic aperture radar,PolInSAR)技术在森林高度反演领域应用最为广泛的模型为随机地体二层散射模型(random volume over ground model,RVoG),但模型未知参数较多,基于单基线PolInSAR数据难以进行参数解算。鉴于此,提出了联合单基线邻域像素PolInSAR观测信息的森林高度反演算法,基于传统RVoG模型,假设在邻域像素内森林高度及消光系数保持不变,地体幅度比参数随像素改变而改变。该方法可以理解为以牺牲部分空间分辨率换取丰富的观测信息,解决单基线配置下基于RVoG模型的参数反演必须借助先验信息的问题。通过采用覆盖Krycklan针叶林实验区以及Mabounie热带雨林实验区的PolInSAR数据,对所提出的联合邻域像素单基线森林高度反演算法进行了实验验证,结果表明,所提方法相对传统解算策略在针叶林实验区均方根误差分别减小25%及19%,在热带雨林实验区均方根误差分别减小23%及15%。该方法适用于森林高度反演。 展开更多
关键词 随机地体二层散射模型 极化干涉合成孔径雷达测量 森林高度反演算法 参数解算 空间分辨率
原文传递
森林年龄遥感估算和应用研究进展 被引量:1
17
作者 马勤 张旭 +6 位作者 袁敬毅 龚梓彤 商荣 程凯 陈茂龙 谭启昀 居为民 《遥感学报》 北大核心 2025年第1期70-82,共13页
林龄是决定森林碳汇能力及其变化趋势的关键因子。定量刻画林龄的时空差异是预估森林生态系统碳源汇变化趋势的重要环节。传统林龄调查仅限于森林样地,随着遥感技术的发展,其估算范围扩展到区域及全球尺度。与林龄相关的研究在林学、生... 林龄是决定森林碳汇能力及其变化趋势的关键因子。定量刻画林龄的时空差异是预估森林生态系统碳源汇变化趋势的重要环节。传统林龄调查仅限于森林样地,随着遥感技术的发展,其估算范围扩展到区域及全球尺度。与林龄相关的研究在林学、生态学、地学等领域也日益受到广泛关注。本文综合论述了自2000年以来,林龄的估算方法及其应用前景的研究进展。基于遥感的林龄估算方法主要分为:光谱纹理信号反演、时间序列变化检测、树高生物量生长方程模拟3大类。光谱纹理信号反演方法简单,但饱和效应明显且精度有限;时序变化检测精度较高,但只适用于有连续遥感观测的中幼林。基于树高生物量生长方程的方法拓宽了林龄估算的限度,但估算精度对生长方程及输入参数非常敏感。因此,综合多源数据、结合多模型方法已成为林龄估算的主流策略,并成功用于中国、加拿大等国家的高分辨率林龄制图。大范围的林龄数据在森林碳循环模拟、生物多样性评估、林业经营与管理等方面有着广阔的应用前景。针对林龄遥感估算,当前亟需完善并更新森林样地数据集,充分挖掘多源、多时空遥感信息,并着力提升估算模型的可迁移性和普适性;以进一步提高林龄估算的精度和效率,从而为林龄相关的研究提供更加全面、可靠的数据和技术支持。 展开更多
关键词 遥感 森林年龄 树高 生物量 碳循环 变化检测 生长方程 森林管理 生物多样性
原文传递
基于基线优选的InSAR相位直方图技术森林垂直结构反演
18
作者 吴传军 沈鹏 +2 位作者 TEBALDINI Stefano 余扬海 廖明生 《武汉大学学报(信息科学版)》 北大核心 2025年第8期1608-1618,共11页
采用干涉相位直方图(phase histogram,PH)技术,原则上仅需单极化、单基线(或少量干涉图)即可获取低分辨率的森林垂直结构。然而,为了应对由机载轨道不稳定而导致垂直波数剧烈变化的问题,提出基线优选的策略,通过约束模糊高筛选合适的干... 采用干涉相位直方图(phase histogram,PH)技术,原则上仅需单极化、单基线(或少量干涉图)即可获取低分辨率的森林垂直结构。然而,为了应对由机载轨道不稳定而导致垂直波数剧烈变化的问题,提出基线优选的策略,通过约束模糊高筛选合适的干涉基线,重建全覆盖实验区的相位直方图结果,并基于欧洲空间局TomoSense机载全极化合成孔径雷达(synthetic aperture radar,SAR)数据集,研究验证所提方法在长波机载SAR数据下获取森林3D垂直结构与森林高度的可行性。实验结果表明,PH技术在合适的干涉基线条件下,能够获取低分辨率的可表征主导散射体特征的3D后向散射能量剖面(即森林垂直结构);同时也能够获取一定精度的森林高度产品,以机载激光雷达森林高度为参考,P波段与L波段数据估计的森林高度均方根误差分别为4.60 m和5.21 m。研究表明,PH技术能够通过少量基线数据获取森林垂直结构,具备未来星载高分辨率SAR卫星森林监测任务中广域森林制图的潜力。 展开更多
关键词 森林高度 垂直结构 相位直方图 TomoSense 基线优选 主导散射体 INSAR
原文传递
基于树种分类的阔叶混交林单木枝下高预测模型
19
作者 李晨 董利虎 苗铮 《森林工程》 北大核心 2025年第5期883-895,共13页
帽儿山阔叶混交林以其复杂的林分结构、丰富的物种多样性以及树种间错综复杂的相互作用对枝下高的生长产生影响。精确构建枝下高模型对于指导林分经营管理、提升生长预测准确性有重要参考价值。选择28块在帽儿山地区有阔叶混交林代表性... 帽儿山阔叶混交林以其复杂的林分结构、丰富的物种多样性以及树种间错综复杂的相互作用对枝下高的生长产生影响。精确构建枝下高模型对于指导林分经营管理、提升生长预测准确性有重要参考价值。选择28块在帽儿山地区有阔叶混交林代表性的样地,并将样地内广泛分布的18个树种按照树种胸径变异系数、树种平均胸径、树种平均高径比、树种占比、软阔硬阔树种分类以及树种耐荫性等指标进行分组,通过该方法解决树种复杂性以及单一树种样本量不足而导致的模型构建的难题。采用维科夫(Wykoff)模型作为基础模型。考虑林分、竞争以及物种多样性等因子表达林分混交度、竞争等情况,建立广义枝下高模型。考虑样地、树种组间枝下高的差异,构建枝下高混合效应模型。采用“留一法”进行检验预测,分析抽样对结果的影响。结果表明帽儿山常见的树种可以分为4个树种组,除胸径、树高外,优势木平均高、种内竞争大于对象木断面积之和以及Shannon指数对枝下高有显著影响。样地和树种组混合效应的基础和广义枝下高模型具有较高的拟合精度,R2为0.638和0.627,RMSE分别为1.880和1.909。每个样地、每个树种组随机抽取1株样本校正混合模型时,广义枝下高混合模型相较于固定效应模型,其MAE和MAPE分别降低了7.51%和13.51%,表现出更好的预测效果。分析帽儿山地区树木种类多样以及树木各生态功能对枝下高生长的影响,为预测帽儿山阔叶混交林不同树种的枝下高提供参考。 展开更多
关键词 阔叶混交林 枝下高 树种分组 混合效应模型 模型校正
在线阅读 下载PDF
基于GEDI弱波束回波波形的不同地形坡度森林冠层高度估测研究
20
作者 蔡龙涛 何家胜 +2 位作者 吴军 邢泽坤 田程硕 《农业机械学报》 北大核心 2025年第8期360-369,410,共11页
针对星载LiDAR(Light laser detection and ranging)GEDI(Global ecosystem dynamics investigation)弱波束条件下低能量发射波激光脉冲引起的低信噪比回波以及高坡度地形导致的林分冠层回波与林下地形回波高度重叠以致森林冠层高度估... 针对星载LiDAR(Light laser detection and ranging)GEDI(Global ecosystem dynamics investigation)弱波束条件下低能量发射波激光脉冲引起的低信噪比回波以及高坡度地形导致的林分冠层回波与林下地形回波高度重叠以致森林冠层高度估测精度偏低问题。本文通过GEDI L2A产品提供的质量筛选字段对弱波束高信噪比、非延时回波、非降轨回波以及林地回波进行数据筛选,之后对比分析不同百分比波形长度参数rh_aN条件下森林冠层高度估测结果以确定估测模型适用因子,并引入地形坡度参数DTM(Digital terrain model)修正0°~5°、0°~10°、0°~15°、0°~20°、0°~25°、0°~30°、0°~>30°以及0°~5°、5°~10°、10°~15°、15°~20°、20°~25°、25°~30°、>30°地形坡度条件下森林冠层高度估测模型以解决由高坡度地形引起的林分冠层回波与林下地形回波重叠问题。研究结果显示,单字段quality_flag参数与组合字段stale_return_flag、degrade_flag、quality_flag、sensitivity参数筛选结果相同,筛选后光斑点保有率为66.60%;选用波形长度字段参数r_(h_64)可实现研究区森林冠层高度估测整体精度达到最高,R^(2)、RMSE分别为0.5562和4.196 m;坡度校正后森林冠层高度整体估测精度R^(2)、RMSE分别为0.5665和4.150 m。研究结果表明森林冠层高度估测精度整体随地形坡度增大呈下降趋势,而引入地形坡度因子后能够在一定程度上提高森林冠层高度估测精度,且地形坡度在0°~20°之间GEDI弱波束回波能够有效估测森林冠层高度。 展开更多
关键词 森林冠层高度 GEDI 弱波束 光斑点筛选 地形坡度
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部