Transorbital craniocerebral injury is a relatively rare type of penetrating head injury that poses a significant threat to the ocular and cerebral structures.^([1])The clinical prognosis of transorbital craniocerebral...Transorbital craniocerebral injury is a relatively rare type of penetrating head injury that poses a significant threat to the ocular and cerebral structures.^([1])The clinical prognosis of transorbital craniocerebral injury is closely related to the size,shape,speed,nature,and trajectory of the foreign object,as well as the incidence of central nervous system damage and secondary complications.The foreign objects reported to have caused these injuries are categorized into wooden items,metallic items,^([2-8])and other materials,which penetrate the intracranial region via fi ve major pathways,including the orbital roof (OR),superior orbital fissure (SOF),inferior orbital fissure(IOF),optic canal (OC),and sphenoid wing.Herein,we present eight cases of transorbital craniocerebral injury caused by an unusual metallic foreign body.展开更多
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w...Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.展开更多
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven...The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.展开更多
The three surgical patient safety events, wrong site surgery, retained surgical items (RSI) and surgical fires are rare occurrences and thus their effects on the complex modern operating room (OR) are difficult to stu...The three surgical patient safety events, wrong site surgery, retained surgical items (RSI) and surgical fires are rare occurrences and thus their effects on the complex modern operating room (OR) are difficult to study. The likelihood of occurrence and the magnitude of risk for each of these surgical safety events are undefined. Many providers may never have a personal experience with one of these events and training and education on these topics are sparse. These circumstances lead to faulty thinking that a provider won't ever have an event or if one does occur the provider will intuitively know what to do. Surgeons are not preoccupied with failure and tend to usually consider good outcomes, which leads them to ignore or diminish the importance of implementing and following simple safety practices. These circumstances contribute to the persistent low level occurrence of these three events and to the difficulty in generating sufficient interest to resource solutions. Individual facilities rarely have the time or talent to understand these events and develop lasting solutions. More often than not, even the most well meaning internal review results in a new line to a policy and some rigorous enforcement mandate. This approach routinely fails and is another reason why these problems are so persistent. Vigilance actions alone havebeen unsuccessful so hospitals now have to take a systematic approach to implementing safer processes and providing the resources for surgeons and other stake-holders to optimize the OR environment. This article discusses standardized processes of care for mitigation of injury or outright prevention of wrong site surgery, RSI and surgical fires in an action-oriented framework illustrating the strategic elements important in each event and focusing on the responsibilities for each of the three major OR agents-anesthesiologists, surgeons and nurses. A Surgical Patient Safety Checklist is discussed that incorporates the necessary elements to bring these team members together and influence the emergence of a safer OR.展开更多
It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square...It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square curve fitting to identify the rail in the image is proposed in this paper.The image in front of the train can be obtained through the camera on-board.After preprocessing,it will be divided equally along the longitudinal axis.Utilizing the characteristics of the LSD algorithm,the edges are approximated into multiple line segments.After screening the terminals of the line segments,it can generate the mathematical model of the rail in the image based on the least square.Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.展开更多
With the rapid development and widespread application of electric vehicles(EVs)around the world,the wireless power transfer(WPT)technology is also accelerating for commercial applications in EV wireless charging(EV-WP...With the rapid development and widespread application of electric vehicles(EVs)around the world,the wireless power transfer(WPT)technology is also accelerating for commercial applications in EV wireless charging(EV-WPT)because of its high reliability,safety,and convenience,especially high suitability for the future self-driving scenario.Foreign object detection(FOD),mainly including metal object detection and living object detection,is required urgently and timely for the practical application of EV-WPT technology to ensure electromagnetic safety.In the last decade,especially in the past three years,many pieces of research on FOD have been reported.This article reviews FOD state-of-the-art technology for EV-WPT and compares the pros and cons of different approaches in terms of sensitivity,reliability,adaptability,complexity,and cost.Future challenges for research and development are also discussed to encourage commercialisation of EV-WPT technique.展开更多
Objects in agricultural soils will seriously affect the farming operations of agricultural machinery.At present,it still relies on human experience to judge abnormal Gounrd-penetrting Radar(GPR)signals.It is difficult...Objects in agricultural soils will seriously affect the farming operations of agricultural machinery.At present,it still relies on human experience to judge abnormal Gounrd-penetrting Radar(GPR)signals.It is difficult for traditional image processing technology to form a general positioning method for the randomness and diversity characteristics of GPR signals in soil.Although many scholars had researched a variety of image-processing techniques,most methods lack robustness.In this study,the deep learning algorithm Mask Region-based Convolutional Neural Network(Mask-RCNN)and a geometric model were combined to improve the GPR positioning accuracy.First,a soil stratification experiment was set to classify the physical parameters of the soil and study the attenuation law of electromagnetic waves.Secondly,a SOIL-GPR geometric model was proposed,which can be combined with Mask-RCNN's MASK geometric size to predict object sizes.The results proved the effectiveness and accuracy of the model for position detection and evaluation of objects in soils;then,the improved Mask RCNN method was used to compare the feature extraction accuracy of U-Net and Fully Convolutional Networks(FCN);Finally,the operating speed of agricultural machinery was simulated and designed the A-B survey line experiment.The detection accuracy was evaluated by several indicators,such as the survey line direction,soil depth false alarm rate,Mean Average Precision(mAP),and Intersection over Union(IoU).The results showed that pixel-level segmentation and positioning based on Mask RCNN can improve the accuracy of the position detection of objects in agricultural soil effectively,and the average error of depth prediction is 2.87 cm.The results showed that the detection technology proposed in this study integrates the advantage of soil environmental parameters,geometric models,and artificial intelligence algorithms to provide a high-precision and technical solution for the GPR non-destructive detection of soils.展开更多
文摘Transorbital craniocerebral injury is a relatively rare type of penetrating head injury that poses a significant threat to the ocular and cerebral structures.^([1])The clinical prognosis of transorbital craniocerebral injury is closely related to the size,shape,speed,nature,and trajectory of the foreign object,as well as the incidence of central nervous system damage and secondary complications.The foreign objects reported to have caused these injuries are categorized into wooden items,metallic items,^([2-8])and other materials,which penetrate the intracranial region via fi ve major pathways,including the orbital roof (OR),superior orbital fissure (SOF),inferior orbital fissure(IOF),optic canal (OC),and sphenoid wing.Herein,we present eight cases of transorbital craniocerebral injury caused by an unusual metallic foreign body.
基金supported by a grant from the National Key Research and Development Project(2023YFB4302100)Key Research and Development Project of Jiangxi Province(No.20232ACE01011)Independent Deployment Project of Ganjiang Innovation Research Institute,Chinese Academy of Sciences(E255J001).
文摘Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.
基金supported in part by the Science and Technology Innovation Project of CHN Energy Shuo Huang Railway Development Company Ltd(No.SHTL-22-28)the Beijing Natural Science Foundation Fengtai Urban Rail Transit Frontier Research Joint Fund(No.L231002)the Major Project of China State Railway Group Co.,Ltd.(No.K2023T003)。
文摘The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.
文摘The three surgical patient safety events, wrong site surgery, retained surgical items (RSI) and surgical fires are rare occurrences and thus their effects on the complex modern operating room (OR) are difficult to study. The likelihood of occurrence and the magnitude of risk for each of these surgical safety events are undefined. Many providers may never have a personal experience with one of these events and training and education on these topics are sparse. These circumstances lead to faulty thinking that a provider won't ever have an event or if one does occur the provider will intuitively know what to do. Surgeons are not preoccupied with failure and tend to usually consider good outcomes, which leads them to ignore or diminish the importance of implementing and following simple safety practices. These circumstances contribute to the persistent low level occurrence of these three events and to the difficulty in generating sufficient interest to resource solutions. Individual facilities rarely have the time or talent to understand these events and develop lasting solutions. More often than not, even the most well meaning internal review results in a new line to a policy and some rigorous enforcement mandate. This approach routinely fails and is another reason why these problems are so persistent. Vigilance actions alone havebeen unsuccessful so hospitals now have to take a systematic approach to implementing safer processes and providing the resources for surgeons and other stake-holders to optimize the OR environment. This article discusses standardized processes of care for mitigation of injury or outright prevention of wrong site surgery, RSI and surgical fires in an action-oriented framework illustrating the strategic elements important in each event and focusing on the responsibilities for each of the three major OR agents-anesthesiologists, surgeons and nurses. A Surgical Patient Safety Checklist is discussed that incorporates the necessary elements to bring these team members together and influence the emergence of a safer OR.
基金National Natural Science Foundation of China(No.61763023).
文摘It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square curve fitting to identify the rail in the image is proposed in this paper.The image in front of the train can be obtained through the camera on-board.After preprocessing,it will be divided equally along the longitudinal axis.Utilizing the characteristics of the LSD algorithm,the edges are approximated into multiple line segments.After screening the terminals of the line segments,it can generate the mathematical model of the rail in the image based on the least square.Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.
基金Key R&D Program of Guangdong Province,China(No.2020B0404030004)partly by the open research fund from Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ)(No.GML-KF-22-19)partly by the National Natural Science Foundation of China(No.62001301).
文摘With the rapid development and widespread application of electric vehicles(EVs)around the world,the wireless power transfer(WPT)technology is also accelerating for commercial applications in EV wireless charging(EV-WPT)because of its high reliability,safety,and convenience,especially high suitability for the future self-driving scenario.Foreign object detection(FOD),mainly including metal object detection and living object detection,is required urgently and timely for the practical application of EV-WPT technology to ensure electromagnetic safety.In the last decade,especially in the past three years,many pieces of research on FOD have been reported.This article reviews FOD state-of-the-art technology for EV-WPT and compares the pros and cons of different approaches in terms of sensitivity,reliability,adaptability,complexity,and cost.Future challenges for research and development are also discussed to encourage commercialisation of EV-WPT technique.
基金supported by the Laboratory of Lingnan Modern Agriculture Project(Grant No.NT2021009)Guangdong University Key Field(Artificial Intelligence)Special Project(No.2019KZDZX1012)and the 111 Project(D18019)+3 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110554)China Postdoctoral Science Foundation(Grant No.2022M721201)the National Natural Science Foundation of China(Grant No.31901411)The Open Competition Program of the Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province(No.2022SDZG03).
文摘Objects in agricultural soils will seriously affect the farming operations of agricultural machinery.At present,it still relies on human experience to judge abnormal Gounrd-penetrting Radar(GPR)signals.It is difficult for traditional image processing technology to form a general positioning method for the randomness and diversity characteristics of GPR signals in soil.Although many scholars had researched a variety of image-processing techniques,most methods lack robustness.In this study,the deep learning algorithm Mask Region-based Convolutional Neural Network(Mask-RCNN)and a geometric model were combined to improve the GPR positioning accuracy.First,a soil stratification experiment was set to classify the physical parameters of the soil and study the attenuation law of electromagnetic waves.Secondly,a SOIL-GPR geometric model was proposed,which can be combined with Mask-RCNN's MASK geometric size to predict object sizes.The results proved the effectiveness and accuracy of the model for position detection and evaluation of objects in soils;then,the improved Mask RCNN method was used to compare the feature extraction accuracy of U-Net and Fully Convolutional Networks(FCN);Finally,the operating speed of agricultural machinery was simulated and designed the A-B survey line experiment.The detection accuracy was evaluated by several indicators,such as the survey line direction,soil depth false alarm rate,Mean Average Precision(mAP),and Intersection over Union(IoU).The results showed that pixel-level segmentation and positioning based on Mask RCNN can improve the accuracy of the position detection of objects in agricultural soil effectively,and the average error of depth prediction is 2.87 cm.The results showed that the detection technology proposed in this study integrates the advantage of soil environmental parameters,geometric models,and artificial intelligence algorithms to provide a high-precision and technical solution for the GPR non-destructive detection of soils.