期刊文献+
共找到55,901篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation of WRF-based Convection-Permitting Ensemble Forecasts for an Extreme Rainfall Event in East China during the Mei-yu Season
1
作者 Chengyi ZHANG Mengwen WU Yali LUO 《Advances in Atmospheric Sciences》 2025年第10期2102-2124,共23页
This study focuses on an extreme rainfall event in East China during the mei-yu season,in which the capital city(Nanjing)of Jiangsu Province experienced a maximum 14-h rainfall accumulation of 209.6 mm and a peak hour... This study focuses on an extreme rainfall event in East China during the mei-yu season,in which the capital city(Nanjing)of Jiangsu Province experienced a maximum 14-h rainfall accumulation of 209.6 mm and a peak hourly rainfall of 118.8 mm.The performance of two sets of convection-permitting ensemble forecast systems(CEFSs),each with 30 members and a 3-km horizontal grid spacing,is evaluated.The CEFS_ICBCs,using multiple initial and boundary conditions(ICs and BCs),and the CEFS_ICBCs Phys,which incorporates both multi-physics schemes and ICs/BCs,are compared to the CMA-REPS(China Meteorological Administration-Regional Ensemble Prediction System)with a coarser 10-km grid spacing.The two CEFSs demonstrate more uniform rank histograms and lower Brier scores(with higher resolution),improving precipitation intensity predictions and providing more reliable probability forecasts,although they overestimate precipitation over Mt.Dabie.It is challenging for the CEFSs to capture the evolution of mesoscale rainstorms that are known to be related to the errors in predicting the southwesterly low-level winds.Sensitivity experiments reveal that the microphysics and radiation schemes introduce considerable uncertainty in predicting the intensity and location of heavy rainfall in and near Nanjing and Mt.Dabie.In particular,the Asymmetric Convection Model 2(ACM2)planetary boundary layer scheme combined with the Pleim-Xiu surface layer scheme tends to produce a biased northeastward extension of the boundary-layer jet,contributing to the northeastward bias of heavy precipitation around Nanjing in the CEFS_ICBCs. 展开更多
关键词 extreme rainfall mei-yu season convection-permitting ensemble forecasts forecast evaluation
在线阅读 下载PDF
Enhanced Load-Settlement Curve Forecasts for Open-Ended Pipe Piles Incorporating Soil Plug Constraints Using Shallow and Deep Neural Networks
2
作者 Luttfi A.AL-HADDAD Mohammed Y.FATTAH +2 位作者 Wissam H.S.AL-SOUDANI Sinan A.AL-HADDAD Alaa Abdulhady JABER 《China Ocean Engineering》 2025年第3期562-572,共11页
This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Levera... This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Leveraging a dataset comprising open-ended pipe piles with varying geometrical and geotechnical properties, this research employs shallow neural network(SNN) and deep neural network(DNN) models to predict plugging conditions for both driven and pressed installation types. This paper underscores the importance of key parameters such as the settlement value,applied load, installation type, and soil configuration(loose, medium, and dense) in accurately predicting pile settlement. These findings offer valuable insights for optimizing pile design and construction in geotechnical engineering,addressing a longstanding challenge in the field. The study demonstrates the potential of the SNN and DNN models in precisely identifying plugging conditions before pile driving, with the SNN achieving R2 values ranging from0.444 to 0.711 and RMSPE values ranging from 24.621% to 48.663%, whereas the DNN exhibits superior performance, with R2 values ranging from 0.815 to 0.942 and RMSPE values ranging from 4.419% to 10.325%. These results have significant implications for enhancing construction practices and reducing uncertainties associated with pile foundation projects in addition to leveraging artificial intelligence tools to avoid long experimental procedures. 展开更多
关键词 pipe piles soil plug artificial neural network bearing capacity forecasts
在线阅读 下载PDF
Exploring small‑scale optimization coupling learning approaches for enterprises’financial health forecasts
3
作者 Lin Zhu Zhihua Zhang M.James C.Crabbe 《Financial Innovation》 2025年第1期2200-2217,共18页
The financial health of leading enterprises has a significant impact on the sustainable development of the global economy.Most data-driven financial health forecasts are based on the direct use of small-scale machine ... The financial health of leading enterprises has a significant impact on the sustainable development of the global economy.Most data-driven financial health forecasts are based on the direct use of small-scale machine learning.In this study,we proposed the idea of optimization coupling learning to improve these machine learning models in financial health forecasting.It not only revealed lagging,immediate,continuous impacts of various indicators in different fiscal year,but also had the same low computational cost and complexity as known small-scale machine learning models.We used our optimization coupling learning to investigate 3424 leading enterprises in China and revealed inner triggering mechanisms and differences of enterprises’financial health status from individual behavior to macro level. 展开更多
关键词 Financial health forecasts Optimization coupling learning Triggering mechanisms Small-scale models
在线阅读 下载PDF
AI-based Correction of Wave Forecasts Using the Transformer-enhanced UNet Model
4
作者 Yanzhao CAO Shouwen ZHANG +2 位作者 Guannan LV Mengchao YU Bo AI 《Advances in Atmospheric Sciences》 2025年第1期221-231,共11页
Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.T... Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.The traditional method that relies on forecasters'subjective correction of station observation data for forecasting has been unable to meet the practical needs of refined forecasting.To address this problem,this paper proposes a Transformer-enhanced UNet(TransUNet)model for wave forecast AI correction,which fuses wind and wave information.The Transformer structure is integrated into the encoder of the UNet model,and instead of using the traditional upsampling method,the dual-sampling module is employed in the decoder to enhance the feature extraction capability.This paper compares the TransUNet model with the traditional UNet model using wind speed forecast data,wave height forecast data,and significant wave height reanalysis data provided by ECMWF.The experimental results indicate that the TransUNet model yields smaller root-meansquare errors,mean errors,and standard deviations of the corrected results for the next 24-h forecasts than does the UNet model.Specifically,the root-mean-square error decreased by more than 21.55%compared to its precorrection value.According to the statistical analysis,87.81%of the corrected wave height errors for the next 24-h forecast were within±0.2m,with only 4.56%falling beyond±0.3 m.This model effectively limits the error range and enhances the ability to forecast wave heights. 展开更多
关键词 TransUNet TRANSFORMER wave forecasting bias correction
在线阅读 下载PDF
Impacts of lateral boundary conditions from numerical models and data-driven networks on convective-scale ensemble forecasts
5
作者 Junjie Deng Jin Zhang +3 位作者 Haoyan Liu Hongqi Li Feng Chen Jing Chen 《Atmospheric and Oceanic Science Letters》 2025年第2期78-85,共8页
The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzho... The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzhou RDP(19th Hangzhou Asian Games Research Development Project on Convective-scale Ensemble Prediction and Application)testbed,with the LBCs respectively sourced from National Centers for Environmental Prediction(NCEP)Global Forecast System(GFS)forecasts with 33 vertical levels(Exp_GFS),Pangu forecasts with 13 vertical levels(Exp_Pangu),Fuxi forecasts with 13 vertical levels(Exp_Fuxi),and NCEP GFS forecasts with the vertical levels reduced to 13(the same as those of Exp_Pangu and Exp_Fuxi)(Exp_GFSRDV).In general,Exp_Pangu performs comparably to Exp_GFS,while Exp_Fuxi shows slightly inferior performance compared to Exp_Pangu,possibly due to its less accurate large-scale predictions.Therefore,the ability of using data-driven networks to efficiently provide LBCs for convective-scale ensemble forecasts has been demonstrated.Moreover,Exp_GFSRDV has the worst convective-scale forecasts among the four experiments,which indicates the potential improvement of using data-driven networks for LBCs by increasing the vertical levels of the networks.However,the ensemble spread of the four experiments barely increases with lead time.Thus,each experiment has insufficient ensemble spread to present realistic forecast uncertainties,which will be investigated in a future study. 展开更多
关键词 Ensemble forecast Convective scale Lateral boundary conditions Data-driven network
在线阅读 下载PDF
Impact of Assimilating Pseudo-Observations Derived from the“Z-RH”Relation on Analyses and Forecasts of a Strong Convection Case
6
作者 Feifei SHEN Lixin SONG +4 位作者 Jinzhong MIN Zhixin HE Aiqing SHU Dongmei XU Jiajun CHEN 《Advances in Atmospheric Sciences》 2025年第5期1010-1025,共16页
Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to a... Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to avoid the nonlinearity issues associated with the observation operator.In a widely applied water vapor retrieval scheme,a cloud is assumed to be saturated when the radar reflectivity exceeds a certain threshold.This study replaces the traditional retrieval scheme with the“Z-RH”(radar reflectivity and relative humidity)linear statistical relationship for estimating the water vapor content,which is implemented to reduce the uncertainty caused by empirical relationships.The“Z-RH”relationship is statistically obtained from the humidity and the observations for rainfall rate at different temperature intervals with the use of the Z-R(radar reflectivity-rain rate)relationship.The impacts of these two retrieval approaches are investigated in the analyses and forecasts based on the radar reflectivity.The results suggest that both water vapor retrieval schemes yield similar reflectivity analyses,with“Z-RH”showing slightly stronger reflectivity intensities.Utilizing a“Z-RH”scheme contributes significantly to the improved analyses and forecasts of humidity and wind fields,resulting in more reasonable thermodynamic and dynamic structures.As the“Z-RH”relationship obtained by real-time statistics in a specific area provides a scientific basis for the retrieval of water vapor,a“Z-RH”scheme is beneficial to obtain more accurate reflectivity forecasts.The overall scores for the predicted precipitation of a“Z-RH”scheme are roughly 10%-20%higher compared to those of the traditional scheme. 展开更多
关键词 radar reflectivity data indirect assimilation water vapor retrieval heavy precipitation forecast
在线阅读 下载PDF
文拉法辛血药浓度超警戒值风险预测模型的临床价值研究
7
作者 张彦景 周春华 +3 位作者 李晓东 刘琰 王婧 于静 《中国全科医学》 北大核心 2026年第6期777-782,共6页
背景文拉法辛为5-羟色胺肾上腺素再摄取抑制剂(SNRI)类抗抑郁药,广泛用于治疗重度抑郁、广泛性焦虑障碍和抑郁共病,《中国精神科治疗药物监测临床应用专家共识(2022年版)》提出在治疗过程中,文拉法辛可行血药浓度监测,避免超警戒浓度使... 背景文拉法辛为5-羟色胺肾上腺素再摄取抑制剂(SNRI)类抗抑郁药,广泛用于治疗重度抑郁、广泛性焦虑障碍和抑郁共病,《中国精神科治疗药物监测临床应用专家共识(2022年版)》提出在治疗过程中,文拉法辛可行血药浓度监测,避免超警戒浓度使用而导致不良反应发生或治疗效果不理想。但患者生理、基因多态性等因素对其血药浓度超警戒值的影响存在一定争议。目的探索抑郁患者文拉法辛血药浓度超警戒值的影响因素,并构建文拉法辛血药浓度超警戒值的风险预测模型,为文拉法辛个体化用药提供参考。方法回顾性分析2021年1月—2024年8月于河北医科大学第一医院服用文拉法辛进行治疗并接受血药浓度监测住院患者的临床资料,将所纳入患者按文拉法辛血药浓度监测值分为达标组(血药浓度100~400 ng/mL)和超警戒组(血药浓度>800 ng/mL),收集两组患者的性别、年龄、BMI、日均服药剂量、血浆白蛋白、合并用药、肝肾功能情况,采用多因素Logistic回归分析筛选文拉法辛血药浓度超警戒值的独立影响因素,根据筛选出的独立影响因素构建列线图预测模型,并对该模型进行验证。结果本研究共纳入患者590例,其中男203例(34.4%)、女387例(65.6%),平均年龄(51.9±16.4)岁。590例患者中达标组516例(87.5%)、超警戒组74例(12.5%)。多因素Logistic回归分析结果显示,日均服药剂量≥225 mg(OR=26.628,95%CI=12.912~54.916,P<0.001)、肾损害(OR=2.429,95%CI=1.215~4.854,P=0.012)、合用细胞色素P450(CYP)2D6抑制剂(OR=5.232,95%CI=2.781~9.844,P<0.001)是文拉法辛血药浓度超出警戒值的危险因素。根据所筛选出的独立影响因素,建立了文拉法辛血药浓度超警戒值的列线图预测模型,该模型预测抑郁患者文拉法辛血药浓度超警戒值的ROC曲线下面积(AUC)为0.899(95%CI=0.864~0.935),灵敏度为48.65%,特异度为95.74%,阳性预测值为62.07%,阴性预测值为92.86%;Bootstrap法验证结果显示,校正曲线与实际曲线一致性良好(Brier评分=0.072);Hosmer-Lemeshow检验结果显示,列线图预测模型的校准度良好(χ^(2)=3.160,P=0.531);临床决策曲线分析(DCA)结果显示,当阈值为0.05~0.80时,列线图模型具有较好的临床实用性。结论日均服药剂量≥225 mg、存在肾损害、合并使用CYP2D6抑制剂是抑郁患者血药浓度超警戒值的独立危险因素,据此构建的列线图模型能有效预测抑郁患者文拉法辛血药浓度超警戒风险程度,具有较高的临床应用价值。 展开更多
关键词 文拉法辛 血药浓度 治疗药物监测 影响因素 列线图 预测 超警戒值
暂未订购
低空经济产业关键核心技术发展潜力预测及竞争态势研究
8
作者 杨东 彭前朝 魏泽龙 《统计与信息论坛》 北大核心 2026年第1期49-60,共12页
预测关键核心技术发展趋势,评估技术竞争态势,对低空经济产业实现技术突破和应用场景开发至关重要。首先,考虑知识流动的方向性和共现关系的权重性构建有向加权国际专利分类号共现网络,从地位垄断性、知识主导性和技术新颖性三个维度构... 预测关键核心技术发展趋势,评估技术竞争态势,对低空经济产业实现技术突破和应用场景开发至关重要。首先,考虑知识流动的方向性和共现关系的权重性构建有向加权国际专利分类号共现网络,从地位垄断性、知识主导性和技术新颖性三个维度构建指标体系识别低空经济产业关键核心技术;其次,结合技术生命周期理论预测关键核心技术发展潜力;最后,构建主体合作网络,通过专利持有与合作贡献两维度评估区域竞争力。围绕低空经济产业展开实证研究,预测并识别具备发展潜力的关键核心技术,涵盖B64U20/87(飞行器成像设备安装技术)、B64U60/40(可折叠起落架)、G06F17/10(电数字数据处理中的复杂数学运算方法)、H04W24/02(无线通信网络性能优化技术)、B64U10/14(四轴飞行器)和G06V20/17(飞行器拍摄装置或优化方法)。北京在上述技术领域综合实力位居全国第一,广东、江苏、浙江和陕西处于第二梯队。基于研究结论,提出以下政策建议:一是强化技术预见能力,建立低空经济专利大数据监测平台,定期开展技术扫描与竞争态势分析;二是完善产业链生态,推动数据处理、飞控系统、通信导航等重点技术领域协同发展;三是建立区域协同创新机制,形成以北京为引领、多省份协同分工的集群发展格局;四是推动差异化产品开发,依托地方优势打造低空物流、旅游等特色应用场景,避免同质竞争。研究结论为政府和企业把握低空经济产业技术发展路径、认识技术发展差距、制定发展战略提供了参考依据。 展开更多
关键词 低空经济产业 关键核心技术 发展潜力预测 竞争态势分析 区域竞争力
在线阅读 下载PDF
基于LSTM-Transformer模型的突水条件下矿井涌水量预测
9
作者 李振华 姜雨菲 +1 位作者 杜锋 王文强 《河南理工大学学报(自然科学版)》 北大核心 2026年第1期77-85,共9页
目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基... 目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基础,提出LSTMTransformer模型。利用LSTM捕捉矿井涌水量的动态时序特征,通过Transformer的多头注意力机制分析含水层水位变化和矿井涌水量之间的复杂时序关联,构建水位动态变化驱动下的矿井涌水量精准预测框架。结果结果表明,LSTM-Transformer模型预测精度显著优于LSTM,CNN,Transformer和CNN-LSTM模型的,其均方根误差为20.91 m^(3)/h,平均绝对误差为16.08 m^(3)/h,平均绝对百分比误差为1.12%,且和单因素涌水量预测模型相比,水位-涌水量双因素预测模型预测结果更加稳定。结论LSTM-Transformer模型成功克服传统方法在捕捉复杂水文地质系统中水位-涌水量动态关联上的局限,为矿井涌水量动态预测提供可解释性强、鲁棒性好的解决方案,也为类似地质条件下矿井涌水量预测提供了新方法。 展开更多
关键词 涌水量预测 水位动态响应 LSTM-Transformer耦合模型 时间序列预测 注意力机制 矿井安全生产
在线阅读 下载PDF
Application Research of Temperature Forecasts on Elman Neural Network
10
作者 王芳 涂春丽 勾永尧 《Agricultural Science & Technology》 CAS 2011年第11期1680-1681,1686,共3页
[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing durin... [Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing during 1951-2010, the Elman artificial neural network model was applied to predict the temperature. [Result] This simulation result suggested that the relative error was small and can have a good simulation to the future temperature changes. [Conclusion] The prediction result can guide agricultural production and further apply to the field of pricing the weather derivative products. 展开更多
关键词 Temperature forecasts Elman neural network Agricultural production
在线阅读 下载PDF
Improvement in Background Error Covariances Using Ensemble Forecasts for Assimilation of High-Resolution Satellite Data
11
作者 Seung-Woo LEE Dong-Kyou LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期758-774,共17页
Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper di... Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated. 展开更多
关键词 3DVAR background error covariances retrieved satellite data assimilation ensemble forecasts.
在线阅读 下载PDF
Forecast errors of tropical cyclone track and intensity by the China Meteorological Administration from 2013 to 2022
12
作者 Huanmujin Yuan Hong Wang +2 位作者 Yubin Li Kevin K.W.Cheung Zhiqiu Gao 《Atmospheric and Oceanic Science Letters》 2026年第1期72-77,共6页
This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administratio... This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development. 展开更多
关键词 Forecast error Tropical cyclone TRACK INTENSITY
在线阅读 下载PDF
A novel deep learning-based framework for forecasting
13
作者 Congqi Cao Ze Sun +2 位作者 Lanshu Hu Liujie Pan Yanning Zhang 《Atmospheric and Oceanic Science Letters》 2026年第1期22-26,共5页
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep... Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance. 展开更多
关键词 Weather forecasting Deep learning Semantic segmentation models Learnable Gaussian noise Cascade prediction
在线阅读 下载PDF
Do Higher Horizontal Resolution Models Perform Better?
14
作者 Shoji KUSUNOKI 《Advances in Atmospheric Sciences》 2026年第1期259-262,共4页
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(... Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)]. 展开更多
关键词 enhancing model resolution refinement data assimilation systems section climate model climate projection higher horizontal resolution seasonal forecasting simulation seasonal migration rain bands model resolution
在线阅读 下载PDF
基于光伏功率概率预测的新能源配电系统节点电压不确定性量化
15
作者 沈仲恺 宗星辰 +3 位作者 万灿 郑舒 赵景涛 鞠平 《电力自动化设备》 北大核心 2026年第1期31-39,共9页
针对分布式新能源的大规模接入导致的配电系统电压安全挑战,提出一种基于光伏功率概率预测的新能源配电系统节点电压不确定性量化方法。基于Bootstrap方法与双向长短期记忆网络模型,对光伏功率进行概率预测,将总预测误差分为预测模型误... 针对分布式新能源的大规模接入导致的配电系统电压安全挑战,提出一种基于光伏功率概率预测的新能源配电系统节点电压不确定性量化方法。基于Bootstrap方法与双向长短期记忆网络模型,对光伏功率进行概率预测,将总预测误差分为预测模型误差及数据噪声误差。在光伏预测结果的基础上进一步构建配电系统电压-功率灵敏度矩阵,建立从光伏功率不确定性到节点电压不确定性的线性映射关系。基于配电网电压-功率的物理模型耦合分析,得到节点电压的期望值及波动特征,实现节点电压短期预测的不确定性量化。基于IEEE 33配电系统的算例分析验证了所提方法相对于传统方法具有更高的预测精度。 展开更多
关键词 新能源 配电系统 电压灵敏度 概率预测 不确定性 深度学习
在线阅读 下载PDF
Applications of Bias-removed Ensemble Mean in the Gale Forecasts over the Yellow Sea and the Bohai Sea 被引量:3
16
作者 朱桦 智协飞 俞永庆 《Meteorological and Environmental Research》 CAS 2010年第11期4-8,共5页
Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Pr... Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved. 展开更多
关键词 Bias-removed ensemble mean Gale over the Yellow Sea and the Bohai Sea Forecast skill China
在线阅读 下载PDF
基于图像信息算法的2024年新疆乌什M_(S)7.1地震回溯性预测研究
17
作者 袁伏全 黄浩 +2 位作者 徐玮阳 张晓清 刘兴盛 《地震研究》 北大核心 2026年第2期198-206,共9页
使用1970年以来新疆天山地震带及邻区的地震目录资料,基于图像信息(PI)算法,计算得到2016—2028年该地区逐年滑动的预测窗PI热点分布图像,并使用工作特征图表法(ROC)和R值评分法对PI算法的预测效能进行了检验。结果表明:①在2020—2024... 使用1970年以来新疆天山地震带及邻区的地震目录资料,基于图像信息(PI)算法,计算得到2016—2028年该地区逐年滑动的预测窗PI热点分布图像,并使用工作特征图表法(ROC)和R值评分法对PI算法的预测效能进行了检验。结果表明:①在2020—2024年回溯性预测图像中,2024年新疆乌什M_(S)7.1地震震中区域存在PI热点,具有较强的发震地点指示意义。②在5个回溯性预测时间窗(2016—2020年、2017—2021年、2018—2022年、2019—2023年、2020—2024年)内的PI热点图像演化过程中,乌什M_(S)7.1地震震中附近PI热点表现为“出现—逐步密集增强”,发震概率增大,该热点附近发震紧迫性和地震危险性增强。③ROC检验和R值评分显示,PI算法优于随机预测方法。④综合热点信息演化图像分析得到,南天山地震带的西南端强震危险性较高。 展开更多
关键词 乌什M_(S)7.1地震 PI算法 回溯性预测 地震热点 ROC检验
在线阅读 下载PDF
腹膜透析相关性腹膜炎危险因素及风险预测模型的构建
18
作者 金宇欣 洪波 +2 位作者 王润秀 黄艺 谢文娟 《安徽医药》 2026年第1期149-154,共6页
目的探讨腹膜透析相关性腹膜炎的危险因素,并建立风险预测列线图模型。方法收集2018年1月至2022年12月于赣南医学院第一附属医院首次行腹膜透析置管的531例透析病人临床资料。根据病人随访期间是否发生腹膜透析相关性腹膜炎分为非腹膜炎... 目的探讨腹膜透析相关性腹膜炎的危险因素,并建立风险预测列线图模型。方法收集2018年1月至2022年12月于赣南医学院第一附属医院首次行腹膜透析置管的531例透析病人临床资料。根据病人随访期间是否发生腹膜透析相关性腹膜炎分为非腹膜炎组(400例)和腹膜炎组(131例)。采用单因素分析两组一般资料及实验室检查结果,将差异有统计学意义的变量纳入多因素logistic回归模型,根据结果构建可视化的列线图模型并评估模型的效能。结果与非腹膜透析相关性腹膜炎组病人相比,腹膜透析相关性腹膜炎组病人血红细胞计数[(3.45±0.82)×10^(9)/L比(3.65±0.74)×10^(9)/L]、血红蛋白[(95.35±19.06)g/L比(103.16±20.11)g/L]明显降低(P<0.05),血白蛋白、甘油三酯及血钙降低,而血白细胞计数、中性粒细胞与淋巴细胞比值、血尿酸、血磷及C反应蛋白明显升高(P<0.05)。多因素分析显示腹膜透析龄、中性粒细胞与淋巴细胞比值及C反应蛋白是腹膜透析相关性腹膜炎发生的独立危险因素,而血红蛋白是其保护性因素(P<0.05)。风险预测列线图模型曲线下面积为0.77;Hosmer-Lemeshow检验结果显示χ^(2)=3.90(P=0.866);校准曲线与理想曲线相接近,模型准确性较高;决策曲线分析显示模型预测概率阈值为0.09~0.78时临床获益较好。结论基于腹膜透析龄、中性粒细胞与淋巴细胞比值、血红蛋白、C反应蛋白构建的风险预测列线图模型有较好的预测效能,可为临床尽早识别腹膜透析病人发生腹膜透析相关性腹膜炎提供理论依据。 展开更多
关键词 腹膜透析 腹膜炎 危险因素 预测模型 列线图
暂未订购
基于China-PAR模型探究血尿酸与动脉粥样硬化性心血管疾病的相关性
19
作者 赵涟慧 付丹丽 +1 位作者 于超 乔爱春 《中西医结合心脑血管病杂志》 2026年第1期136-140,共5页
目的:基于动脉粥样硬化性心血管疾病风险评估(China-PAR)模型探究血尿酸(SUA)与动脉粥样硬化性心血管疾病(ASCVD)的相关性及其对高危ASCVD的预测价值。方法:选取2021年8月—2023年8月于山西白求恩医院全科医疗科住院治疗的45~79岁符合... 目的:基于动脉粥样硬化性心血管疾病风险评估(China-PAR)模型探究血尿酸(SUA)与动脉粥样硬化性心血管疾病(ASCVD)的相关性及其对高危ASCVD的预测价值。方法:选取2021年8月—2023年8月于山西白求恩医院全科医疗科住院治疗的45~79岁符合纳入与排除标准的370例病人作为研究对象。根据China-PAR结果分为低危组(102例)、中危组(122例)、高危组(146例)。比较3组入选者的临床资料,采用有序多分类Logistic回归分析China-PAR等级的影响因素,采用受试者工作特征(ROC)曲线分析SUA对高危ASCVD的预测价值。结果:3组性别、年龄、收缩压、舒张压、腰围、淋巴细胞数/单核细胞数(LMR)、丙氨酸氨基转移酶(ALT)、直接胆红素(DBiL)、三酰甘油(TG)、SUA、肌酐(Cr)、空腹血糖(FBG)、同型半胱氨酸(Hcy)、D-二聚体、高密度脂蛋白胆固醇(HDL-C)、糖尿病、使用降压药、吸烟史比较,差异均有统计学意义(P<0.05)。中危组年龄、舒张压、收缩压、BMI、ALT、DBil、SUA、Cr、FBG、Hcy、腰围、TG高于低危组,差异均有统计学意义(P<0.05);高危组年龄、舒张压、收缩压、BMI、SUA、Cr、FBG、D-二聚体、腰围高于低危组和中危组,HDL-c低于低危组和中危组,ALT、DBiL、TG、Hcy高于低危组,LMR低于低危组,差异均有统计学意义(P<0.05)。Logistic回归分析结果表明,年龄、腰围、收缩压、D-二聚体、SUA、服用降压药、糖尿病、吸烟史是China-PAR等级的影响因素(P<0.05)。ROC曲线分析结果表明,ROC曲线下面积(AUC)为0.832,95%CI(0.790,0.869),P<0.001。SUA的最佳截断值为339μmol/L,敏感度为76.7%、特异度为73.21%,Youden指数为0.499。结论:SUA与China-PAR风险等级相关,其对高危ASCVD具有一定的预测价值。 展开更多
关键词 动脉粥样硬化性心血管疾病 风险评估 血尿酸 预测
暂未订购
基于神经网络的弹箭终态预报研究
20
作者 杨晓雷 田晓丽 《机械设计与制造工程》 2026年第1期112-116,共5页
针对现有弹箭终态预报方法误差大、耗时长的问题,提出利用神经网络来预报弹箭终态落点及着角信息的方法。在构建网络的过程中采取改进措施,提升预报精度并优化解算时间。结果表明,改进后的神经网络法预测精度高,在误差与解算时长等方面... 针对现有弹箭终态预报方法误差大、耗时长的问题,提出利用神经网络来预报弹箭终态落点及着角信息的方法。在构建网络的过程中采取改进措施,提升预报精度并优化解算时间。结果表明,改进后的神经网络法预测精度高,在误差与解算时长等方面优于传统方法。该方法为弹箭的终态预报研究提供了参考。 展开更多
关键词 精确打击 终态预报 神经网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部