期刊文献+
共找到55,517篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation of WRF-based Convection-Permitting Ensemble Forecasts for an Extreme Rainfall Event in East China during the Mei-yu Season
1
作者 Chengyi ZHANG Mengwen WU Yali LUO 《Advances in Atmospheric Sciences》 2025年第10期2102-2124,共23页
This study focuses on an extreme rainfall event in East China during the mei-yu season,in which the capital city(Nanjing)of Jiangsu Province experienced a maximum 14-h rainfall accumulation of 209.6 mm and a peak hour... This study focuses on an extreme rainfall event in East China during the mei-yu season,in which the capital city(Nanjing)of Jiangsu Province experienced a maximum 14-h rainfall accumulation of 209.6 mm and a peak hourly rainfall of 118.8 mm.The performance of two sets of convection-permitting ensemble forecast systems(CEFSs),each with 30 members and a 3-km horizontal grid spacing,is evaluated.The CEFS_ICBCs,using multiple initial and boundary conditions(ICs and BCs),and the CEFS_ICBCs Phys,which incorporates both multi-physics schemes and ICs/BCs,are compared to the CMA-REPS(China Meteorological Administration-Regional Ensemble Prediction System)with a coarser 10-km grid spacing.The two CEFSs demonstrate more uniform rank histograms and lower Brier scores(with higher resolution),improving precipitation intensity predictions and providing more reliable probability forecasts,although they overestimate precipitation over Mt.Dabie.It is challenging for the CEFSs to capture the evolution of mesoscale rainstorms that are known to be related to the errors in predicting the southwesterly low-level winds.Sensitivity experiments reveal that the microphysics and radiation schemes introduce considerable uncertainty in predicting the intensity and location of heavy rainfall in and near Nanjing and Mt.Dabie.In particular,the Asymmetric Convection Model 2(ACM2)planetary boundary layer scheme combined with the Pleim-Xiu surface layer scheme tends to produce a biased northeastward extension of the boundary-layer jet,contributing to the northeastward bias of heavy precipitation around Nanjing in the CEFS_ICBCs. 展开更多
关键词 extreme rainfall mei-yu season convection-permitting ensemble forecasts forecast evaluation
在线阅读 下载PDF
Enhanced Load-Settlement Curve Forecasts for Open-Ended Pipe Piles Incorporating Soil Plug Constraints Using Shallow and Deep Neural Networks
2
作者 Luttfi A.AL-HADDAD Mohammed Y.FATTAH +2 位作者 Wissam H.S.AL-SOUDANI Sinan A.AL-HADDAD Alaa Abdulhady JABER 《China Ocean Engineering》 2025年第3期562-572,共11页
This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Levera... This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Leveraging a dataset comprising open-ended pipe piles with varying geometrical and geotechnical properties, this research employs shallow neural network(SNN) and deep neural network(DNN) models to predict plugging conditions for both driven and pressed installation types. This paper underscores the importance of key parameters such as the settlement value,applied load, installation type, and soil configuration(loose, medium, and dense) in accurately predicting pile settlement. These findings offer valuable insights for optimizing pile design and construction in geotechnical engineering,addressing a longstanding challenge in the field. The study demonstrates the potential of the SNN and DNN models in precisely identifying plugging conditions before pile driving, with the SNN achieving R2 values ranging from0.444 to 0.711 and RMSPE values ranging from 24.621% to 48.663%, whereas the DNN exhibits superior performance, with R2 values ranging from 0.815 to 0.942 and RMSPE values ranging from 4.419% to 10.325%. These results have significant implications for enhancing construction practices and reducing uncertainties associated with pile foundation projects in addition to leveraging artificial intelligence tools to avoid long experimental procedures. 展开更多
关键词 pipe piles soil plug artificial neural network bearing capacity forecasts
在线阅读 下载PDF
AI-based Correction of Wave Forecasts Using the Transformer-enhanced UNet Model
3
作者 Yanzhao CAO Shouwen ZHANG +2 位作者 Guannan LV Mengchao YU Bo AI 《Advances in Atmospheric Sciences》 2025年第1期221-231,共11页
Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.T... Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.The traditional method that relies on forecasters'subjective correction of station observation data for forecasting has been unable to meet the practical needs of refined forecasting.To address this problem,this paper proposes a Transformer-enhanced UNet(TransUNet)model for wave forecast AI correction,which fuses wind and wave information.The Transformer structure is integrated into the encoder of the UNet model,and instead of using the traditional upsampling method,the dual-sampling module is employed in the decoder to enhance the feature extraction capability.This paper compares the TransUNet model with the traditional UNet model using wind speed forecast data,wave height forecast data,and significant wave height reanalysis data provided by ECMWF.The experimental results indicate that the TransUNet model yields smaller root-meansquare errors,mean errors,and standard deviations of the corrected results for the next 24-h forecasts than does the UNet model.Specifically,the root-mean-square error decreased by more than 21.55%compared to its precorrection value.According to the statistical analysis,87.81%of the corrected wave height errors for the next 24-h forecast were within±0.2m,with only 4.56%falling beyond±0.3 m.This model effectively limits the error range and enhances the ability to forecast wave heights. 展开更多
关键词 TransUNet TRANSFORMER wave forecasting bias correction
在线阅读 下载PDF
Impacts of lateral boundary conditions from numerical models and data-driven networks on convective-scale ensemble forecasts
4
作者 Junjie Deng Jin Zhang +3 位作者 Haoyan Liu Hongqi Li Feng Chen Jing Chen 《Atmospheric and Oceanic Science Letters》 2025年第2期78-85,共8页
The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzho... The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzhou RDP(19th Hangzhou Asian Games Research Development Project on Convective-scale Ensemble Prediction and Application)testbed,with the LBCs respectively sourced from National Centers for Environmental Prediction(NCEP)Global Forecast System(GFS)forecasts with 33 vertical levels(Exp_GFS),Pangu forecasts with 13 vertical levels(Exp_Pangu),Fuxi forecasts with 13 vertical levels(Exp_Fuxi),and NCEP GFS forecasts with the vertical levels reduced to 13(the same as those of Exp_Pangu and Exp_Fuxi)(Exp_GFSRDV).In general,Exp_Pangu performs comparably to Exp_GFS,while Exp_Fuxi shows slightly inferior performance compared to Exp_Pangu,possibly due to its less accurate large-scale predictions.Therefore,the ability of using data-driven networks to efficiently provide LBCs for convective-scale ensemble forecasts has been demonstrated.Moreover,Exp_GFSRDV has the worst convective-scale forecasts among the four experiments,which indicates the potential improvement of using data-driven networks for LBCs by increasing the vertical levels of the networks.However,the ensemble spread of the four experiments barely increases with lead time.Thus,each experiment has insufficient ensemble spread to present realistic forecast uncertainties,which will be investigated in a future study. 展开更多
关键词 Ensemble forecast Convective scale Lateral boundary conditions Data-driven network
在线阅读 下载PDF
Impact of Assimilating Pseudo-Observations Derived from the“Z-RH”Relation on Analyses and Forecasts of a Strong Convection Case
5
作者 Feifei SHEN Lixin SONG +4 位作者 Jinzhong MIN Zhixin HE Aiqing SHU Dongmei XU Jiajun CHEN 《Advances in Atmospheric Sciences》 2025年第5期1010-1025,共16页
Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to a... Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to avoid the nonlinearity issues associated with the observation operator.In a widely applied water vapor retrieval scheme,a cloud is assumed to be saturated when the radar reflectivity exceeds a certain threshold.This study replaces the traditional retrieval scheme with the“Z-RH”(radar reflectivity and relative humidity)linear statistical relationship for estimating the water vapor content,which is implemented to reduce the uncertainty caused by empirical relationships.The“Z-RH”relationship is statistically obtained from the humidity and the observations for rainfall rate at different temperature intervals with the use of the Z-R(radar reflectivity-rain rate)relationship.The impacts of these two retrieval approaches are investigated in the analyses and forecasts based on the radar reflectivity.The results suggest that both water vapor retrieval schemes yield similar reflectivity analyses,with“Z-RH”showing slightly stronger reflectivity intensities.Utilizing a“Z-RH”scheme contributes significantly to the improved analyses and forecasts of humidity and wind fields,resulting in more reasonable thermodynamic and dynamic structures.As the“Z-RH”relationship obtained by real-time statistics in a specific area provides a scientific basis for the retrieval of water vapor,a“Z-RH”scheme is beneficial to obtain more accurate reflectivity forecasts.The overall scores for the predicted precipitation of a“Z-RH”scheme are roughly 10%-20%higher compared to those of the traditional scheme. 展开更多
关键词 radar reflectivity data indirect assimilation water vapor retrieval heavy precipitation forecast
在线阅读 下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:2
6
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
在线阅读 下载PDF
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
7
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(CNNs)
在线阅读 下载PDF
Growth and Interactions of Multi-Source Perturbations in Convection-Allowing Ensemble Forecasts
8
作者 张璐 闵锦忠 +2 位作者 庄潇然 王世璋 魏莉青 《Journal of Tropical Meteorology》 SCIE 2024年第2期118-131,共14页
This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectio... This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development. 展开更多
关键词 convection-allowing ensemble forecast forcing background perturbation growth INTERACTIONS added value
在线阅读 下载PDF
Decadal Forecasts of Large Earthquakes along the Northern San Andreas Fault System, California: Increased Activity on Regional Creeping Faults Prior to Major and Great Events
9
作者 Lynn R. Sykes 《International Journal of Geosciences》 CAS 2024年第2期204-230,共27页
The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise loc... The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity. 展开更多
关键词 San Andreas and Hayward Faults California Fault Creep forecasts Double-Difference Relocations
在线阅读 下载PDF
Evaluating the Robustness of MDSS Maintenance Forecasts Using Connected Vehicle Data
10
作者 Gregory L. Brinster Jairaj Desai +5 位作者 Myles W. Overall Christopher Gartner Rahul Suryakant Sakhare Jijo K. Mathew Nick Evans Darcy Bullock 《Journal of Transportation Technologies》 2024年第4期549-569,共21页
The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connec... The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond. 展开更多
关键词 Weather Forecasting Winter Weather Connected Vehicle Data After-Action Report
在线阅读 下载PDF
Short-Term Wind Speed Forecasts over the Pearl River Estuary:Numerical Model Evaluation and Deterministic Post-Processing
11
作者 SUN Xian SUN Lei +4 位作者 LIANG Xiu-ji SU Ye-kang HUANG Wen-min KANG Hong-ping XIA Dong 《Journal of Tropical Meteorology》 2024年第4期390-404,共15页
The Pearl River Estuary(PRE)is one of China’s busiest shipping hubs and fishery production centers,as well as a region with abundant island tourism and wind energy resources,which calls for accurate short-term wind f... The Pearl River Estuary(PRE)is one of China’s busiest shipping hubs and fishery production centers,as well as a region with abundant island tourism and wind energy resources,which calls for accurate short-term wind forecasts.First,this study evaluated three operational numerical models,i.e.,ECMWF-EC,NCEP-GFS,and CMA-GD,for their ability to predict short-term wind speed over the PRE against in-situ observations during 2018-2021.Overall,ECMWF-EC out-performs other models with an average RMSE of 2.24 m s^(-1)and R of 0.57,but the NCEP-GFS performs better in the case of strong winds.Then,various bias correction and multi-model ensemble(MME)methods are used to perform the deterministic post-processing using a local and lead-specific scheme.Two-factor model output statistics(MOS2)is the optimal bias correction method for reducing(increasing)the overall RMSE(R)to 1.62(0.70)m s^(-1),demonstrating the benefits of considering both initial and lead-specific information.Intercomparison of MME results reveals that Multiple linear regression(MLR)presents superior skills,followed by random forest(RF),but it is slightly inferior to MOS2,particularly for the first few forecasting hours.Furthermore,the incorporation of additional features in MLR reduces the overall RMSE to 1.53 m s^(-1)and increases R to 0.74.Similarly,RF presents comparable results,and both outperform MOS2 in terms of correcting their deficiencies at the first few lead hours and limiting the error growth rate.Despite the satisfactory skill of deterministic post-processing techniques,they are unable to achieve a balanced performance between mean and extreme statistics.This highlights the necessity for further development of probabilistic forecasts. 展开更多
关键词 Pearl River Estuary wind speed forecast numerical model evaluation bias correction multi-model ensemble
在线阅读 下载PDF
两种血清指标与老年大动脉粥样硬化性急性脑梗死患者短期预后的关系 被引量:3
12
作者 张辉 陈亚伦 +3 位作者 孙新超 宋彦 王民珩 高媛媛 《中华老年心脑血管病杂志》 北大核心 2025年第2期206-210,共5页
目的探讨老年大动脉粥样硬化(large artery atherosclerotic,LAA)性急性脑梗死(acute ischemic stroke,AIS)患者血清程序性细胞死亡因子4(programmed cell death 4,PDCD4)、解整合素-金属蛋白酶10(a disingtergrin and metalloprotease ... 目的探讨老年大动脉粥样硬化(large artery atherosclerotic,LAA)性急性脑梗死(acute ischemic stroke,AIS)患者血清程序性细胞死亡因子4(programmed cell death 4,PDCD4)、解整合素-金属蛋白酶10(a disingtergrin and metalloprotease 10,ADAM10)水平与短期预后的关系。方法回顾性选取2022年4月至2024年4月南阳市第二人民医院诊治的LAA性AIS患者122例作为观察组,根据神经功能和预后分为轻度组29例、中度组68例、重度组25例,预后良好组72例和预后不良组50例。同期选取健康体检者125例作为对照组。采用酶联免疫吸附测定法检测血清PDCD4、ADAM10水平,采用多因素logistic回归分析血清PDCD4、ADAM10水平与LAA性AIS患者短期预后的关系,采用ROC曲线分析血清PDCD4、ADAM10对LAA性AIS患者短期预后的预测价值。结果观察组血清PDCD4、ADAM10水平显著高于对照组,差异有统计学意义(P<0.01)。重度组和中度组血清PDCD4、ADAM10水平显著高于轻度组,差异有统计学意义(P<0.05);重度组血清PDCD4、ADAM10水平显著高于中度组(P<0.05)。预后不良组重度神经缺损、高血压、Hcy水平显著高于预后良好组,差异有统计学意义(P<0.01)。PDCD4、ADAM10与LAA性AIS患者短期预后不良有关(OR=2.759,95%CI:1.479~5.146,P=0.001;OR=2.818,95%CI:1.559~5.093,P=0.001)。PDCD4、ADAM10单独和联合预测短期预后不良的AUC分别为0.840、0.864、0.935,联合预测的AUC显著优于单独预测(Z=2.687、2.008,P<0.05)。结论发生短期预后不良的LAA性AIS患者血清PDCD4、ADAM10水平较高,二者联合预测短期预后不良的效能较佳。 展开更多
关键词 动脉粥样硬化 脑梗死 预后 回归分析 预测
暂未订购
突发公共卫生事件冲击下考虑多源异构大数据的旅游需求可解释预测研究 被引量:1
13
作者 曾宇容 吴彬溶 +1 位作者 王林 张金隆 《管理评论》 北大核心 2025年第2期139-151,共13页
本研究利用历史旅游流量数据,新冠病毒感染确诊人数数据,旅游相关和疫情相关的百度指数,天气、节假日数据,设计了考虑突发公共卫生事件冲击下的自然景区每日旅游需求量预测框架。将与疫情相关的搜索引擎数据引入到旅游需求预测中,并提出... 本研究利用历史旅游流量数据,新冠病毒感染确诊人数数据,旅游相关和疫情相关的百度指数,天气、节假日数据,设计了考虑突发公共卫生事件冲击下的自然景区每日旅游需求量预测框架。将与疫情相关的搜索引擎数据引入到旅游需求预测中,并提出了ADE-TFT可解释旅游需求预测新模型,其中自适应差分进化算法(adaptive differential evolution, ADE)用来智能高效地优化时域融合变换器(temporal fusion transformers, TFT)的超参数。TFT是一种基于注意力的深度学习模型,它将高性能预测与对时间动态的可解释分析相结合,在预测研究中呈现了优异的性能。TFT模型产生了可解释的旅游需求预测输出,包括不同输入变量的重要性排序以及不同时间步长的注意力分析。可解释实验结果表明,疫情相关搜索引擎数据能够充分反映出新冠疫情期间游客对疫情的担忧程度,研究结果为突发公共卫生事件冲击下的旅游需求高精度预测提供了理论支持。 展开更多
关键词 旅游需求预测 可解释性预测 复合指数 深度学习 突发公共卫生事件
原文传递
基于InVEST-PLUS耦合模型的合肥市生境质量评价及模拟预测 被引量:5
14
作者 张晓瑞 郭龙坤 王振波 《环境科学》 北大核心 2025年第6期3772-3783,共12页
分析城市土地利用和生境质量的时空演变特征,对于城市生态环境可持续发展具有重要意义.基于2012年、2017年和2022年合肥市土地利用数据,应用PLUS模型进行用地扩张因子驱动研究及2032年土地利用模拟预测,并结合InVEST模型分析合肥市生境... 分析城市土地利用和生境质量的时空演变特征,对于城市生态环境可持续发展具有重要意义.基于2012年、2017年和2022年合肥市土地利用数据,应用PLUS模型进行用地扩张因子驱动研究及2032年土地利用模拟预测,并结合InVEST模型分析合肥市生境质量时空演变特征.结果表明:①合肥市土地利用类型主要包括耕地、建设用地、林地和水体,耕地面积最大;2012~2022年内建设用地面积增加,其余地类面积均减少;预测2032年土地利用变化趋势同2012~2022年基本一致,且都为耕地向建设用地转变.②高程是影响耕地、林地和水体扩张的主要因子,建设用地扩张主要受到社会经济因素影响,草地及未利用地扩张受坡度影响最大.③2012~2022年生境质量持续下降,整体水平偏低,高、较高、中等和较低生境质量区域均减少,低生境质量区域增加,预测2032年生境质量仍呈下降趋势.④2012~2022年耕地转为水体和林地是生境质量正向改善的主要原因,耕地转为建设用地是生境质量下降的主要原因,预测2032年耕地及林地转为建设用地将进一步对生境质量产生负面影响.未来发展可从开发建设活动控制和生态保护两方面入手.研究结果可为合肥市生态环境保护与城市发展建设提供科学的决策依据. 展开更多
关键词 InVEST模型 PLUS模型 生境质量 评价 预测
原文传递
基于Transformer模型的时序数据预测方法综述 被引量:13
15
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 Transformer模型
在线阅读 下载PDF
人工智能海洋学研究的计量分析 被引量:2
16
作者 张灿影 张斌 +1 位作者 冯志纲 李晓峰 《海洋与湖沼》 北大核心 2025年第1期112-125,共14页
海洋科学研究对于理解和保护我们的海洋环境、维持生物多样性、支持经济发展,并应对全球气候变化具有至关重要的作用。近年来,随着海洋监测范围的不断扩大,海洋数据的收集速度和量级呈指数级增长,这远远超出了传统科研方法的处理和分析... 海洋科学研究对于理解和保护我们的海洋环境、维持生物多样性、支持经济发展,并应对全球气候变化具有至关重要的作用。近年来,随着海洋监测范围的不断扩大,海洋数据的收集速度和量级呈指数级增长,这远远超出了传统科研方法的处理和分析能力,给海洋动态变化的分析带来了挑战。同时,海洋数据的快速增长为人工智能(artificial intelligence,AI)提供了丰富的训练材料,为AI的应用提供了广阔的舞台,AI的引入可以有效地处理和分析这些海量数据,通过自动化的方式提高数据处理的效率和准确性,为海洋科学研究提供了全新的视角和方法。基于Web of Science数据库,采用文献计量方法与工具,分析了8 021篇(2024年4月20日为止)AI海洋学研究的整体态势,结果表明:(1) 2020年前后全球AI海洋学研究呈现出爆发式增长;(2) 2017年中国发文数量超过美国,成为AI海洋学研究领域发文最多的国家;(3)环境科学、地球科学和遥感是发表论文最多的3个学科领域;(4) AI技术在海洋生态环境监测、生物多样性评估、海洋和大气现象识别与预报等领域应用较多。尽管AI方法在海洋科学研究应用中表现良好,显示出巨大潜力,但仍存在局限性。未来建议制定统一的海洋数据标准和协议,鼓励跨学科的研究合作,以更有效地利用AI技术挖掘海洋数据的潜力,为海洋保护和管理提供更深入的洞察和解决方案。 展开更多
关键词 人工智能 海洋监测 分类 预报 计量分析
在线阅读 下载PDF
农产品市场监测预警深度学习智能预测方法 被引量:1
17
作者 许世卫 李乾川 +3 位作者 栾汝朋 庄家煜 刘佳佳 熊露 《智慧农业(中英文)》 2025年第1期57-69,共13页
[目的/意义]农产品供给、消费和价格的变化直接影响市场监测和预警。随着中国农业生产方式和市场体系的转型,数据获取技术的进步使得农业数据呈现爆炸式增长。然而,农产品多品种的联动监测和预测仍面临数据复杂、模型狭窄、应变能力弱... [目的/意义]农产品供给、消费和价格的变化直接影响市场监测和预警。随着中国农业生产方式和市场体系的转型,数据获取技术的进步使得农业数据呈现爆炸式增长。然而,农产品多品种的联动监测和预测仍面临数据复杂、模型狭窄、应变能力弱等挑战。因此,亟需构建适应中国农业数据特点的深度学习模型,以提升农产品市场的监测与预警能力,推动精准决策和应急响应。[方法]本研究应用深度学习方法,从中国多维农业数据资源实际出发,创新提出了一套不同监测预警对象条件下深度学习综合预测方法,构建了生成对抗与残差网络协同生产量模型(Generative Adversarial Network and Residual Network, GAN-ResNet)、变分自编码器岭回归消费预测模型(Variational Autoencoder and Ridge Regression, VAE-Ridge)、自适应变换器价格预测模型(Adaptive-Transformer)。为适应实际需求,研究在CAMES中采用“离线计算与可视化分离”策略,模型推理离线完成,平衡了计算复杂度与实时预警需求。[结果和讨论]深度学习综合预测方法在玉米单产、生猪消费量和番茄市场价格的预测上,均表现出显著的精度提升。GAN-ResNet生产量预测模型进行县级尺度玉米单产预测的平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)为6.58%,运用VAE-Ridge模型分析生猪消费量的MAPE为6.28%,运用Adaptive-Transformer模型预测番茄价格的MAPE为2.25%。[结论]该研究提出的深度学习综合预测方法,具有较先进的单品种、多场景、宽条件下的农产品市场监测预警分析能力,并在处理不同区域多维数据、多品种替代、市场季节性波动等分析方面显示出优良的指标性能,可为中国农产品市场监测预警提供一套新的有效分析方法。 展开更多
关键词 监测预警 深度学习 生产量预测 消费量预测 价格预测 生成对抗与残差网络协同生产量模型 变分自编码器岭回归消费预测模型 自适应变换器价格预测模型
在线阅读 下载PDF
基于CEEMDAN-SSA-ELM-LSTM模型的地铁车站深基坑支护桩水平变形预测 被引量:3
18
作者 刘彦伟 彭洁 +4 位作者 任连伟 高保彬 郭佳奇 王泽武 韩红凯 《防灾减灾工程学报》 北大核心 2025年第1期34-46,共13页
灾害监测与预测是岩土工程领域至关重要的任务之一,但工程监测数据中的非平稳性和非线性一直是预测的难点。为应对此挑战,引入数据驱动算法极限学习机(ELM)、长短时记忆神经网络模型(LSTM),结合自适应噪声完备集合经验模态分解(CEEMDAN... 灾害监测与预测是岩土工程领域至关重要的任务之一,但工程监测数据中的非平稳性和非线性一直是预测的难点。为应对此挑战,引入数据驱动算法极限学习机(ELM)、长短时记忆神经网络模型(LSTM),结合自适应噪声完备集合经验模态分解(CEEMDAN)和麻雀搜索算法(SSA),提出了一种改进的地铁车站深基坑变形组合预测模型。首先,通过CEEMDAN将支护桩水平位移序列分解为趋势项和波动项,降低数据的非平稳性。其次,为充分考虑分解序列差异的非线性特征,分别采用SSA优化后的ELM和LSTM模型对低频趋势项与高频波动项进行预测,并将结果叠加重构为最终预测值。最后,以郑州市某地铁车站深基坑为例,通过设置消融实验、对比实验和泛化性验证实验,系统评估了模型的准确性与实用性。结果表明:该模型在精度和稳定性方面显著优于其他模型,其中R2提升了2.88%~23.62%,RMSE和MAPE分别降低了6.63%~41.13%、8.08%~64.79%。这充分说明模型在应对数据非平稳性和捕捉非线性特征方面表现出色,具备良好的可靠性和广泛的应用前景,可为岩土工程中的灾害防治提供新的思路和技术支持。 展开更多
关键词 基坑工程 支护桩 变形监测 组合预测 深度学习
原文传递
西部生态脆弱矿区采动水资源与生态环境效应 被引量:8
19
作者 姚强岭 于利强 +2 位作者 陈胜焱 李英虎 李学华 《煤炭学报》 北大核心 2025年第2期748-767,共20页
西部生态脆弱矿区是我国重要的煤炭生产基地,当前煤炭开采规模与强度已远超其环境承载能力,极有可能造成生态环境的不可逆破坏。后煤炭开采阶段地表生态修复将是该区域面临的最突出的环境问题,而水资源在此过程中起基础配置作用,“水−... 西部生态脆弱矿区是我国重要的煤炭生产基地,当前煤炭开采规模与强度已远超其环境承载能力,极有可能造成生态环境的不可逆破坏。后煤炭开采阶段地表生态修复将是该区域面临的最突出的环境问题,而水资源在此过程中起基础配置作用,“水−环”矛盾突出。煤矿采动水资源是指因采矿活动而转移、汇集并有效储存的水资源,为人造含水层,从区域水循环的角度来看其对地表生态修复具有举足轻重的作用。在总结已有研究成果的基础上,提出了采动水资源总量及采动空间存储量的计算方法,阐述了其与覆岩结构、水文地质、煤层开采及储水空间稳定性等影响因素之间的关系,建立了包含3个方面15种参数的采动水资源潜力评价体系;分析了区域水循环模式及采动影响下的生态损伤过程,探讨了维持生态平衡所需采动水资源总量的计算方法,定义了区域最佳、合理及最低生态需水量的概念,提出了地表生态环境修复效果评价指标,构建了基于煤炭开采全周期的矿井规划设计思路及技术体系;以西部生态脆弱矿区某矿为例,阐述了区域水循环下的水量平衡/超平衡状态,评估和预测了地表生态修复效果。研究表明:即使在枯水年,当前采动水资源总量亦能为地表生态环境提供可靠、足够的水资源,生态修复等级为Ⅱ级。平年和丰年则可以在Ⅰ级水平下修复1.53~2.26倍采空区面积的地表生态环境,同时可以维持更大区域的生态系统功能完整性,比例系数在丰年最高达9.03。采动水资源总量随煤炭开采面积增大而逐级增加,在满足区域生态用水需求的前提下,将其作为战略储备资源长期储存并适时用于国防、民生、工业等方面是下一步重点研究的方向。水是区域生态环境要素改变过程中最关键的影响因素,采动水资源的保护与利用对煤炭安全高效开采与生态环境修复均具有重要的战略价值。 展开更多
关键词 区域水循环 采动水资源 生态修复 水量预测
在线阅读 下载PDF
深度学习技术在洪水预报中的应用进展及思考
20
作者 祁海霞 彭涛 +6 位作者 智协飞 季焱 殷志远 沈铁元 王俊超 向怡衡 胡泊 《气象》 北大核心 2025年第4期446-459,共14页
洪水预报是降低洪灾损失、提升防灾减灾能力非工程措施的有效途径,实现精准洪水预报是水文领域的关键技术挑战之一。目前,基于物理机制的洪水预报模型在模拟精度和效率上仍有不足,而采用深度学习技术构建的预报模型则得到了迅猛发展。... 洪水预报是降低洪灾损失、提升防灾减灾能力非工程措施的有效途径,实现精准洪水预报是水文领域的关键技术挑战之一。目前,基于物理机制的洪水预报模型在模拟精度和效率上仍有不足,而采用深度学习技术构建的预报模型则得到了迅猛发展。文章全面回顾和总结了洪水预报领域所应用的深度学习模型的原理和特点,及其在洪水定量和概率预报中的应用进展和存在问题。聚焦介绍和探讨了深度学习模型与洪水物理模型在物理过程参数化、可解释性研究、洪水预报模型误差校正等方面的契合点和应用前景。分析认为,深度学习未来将走向与物理模型的深度耦合,成为洪水时间序列预报的重要发展范式,并将是实现未来水利智慧化的重要研究内容。最后针对深度学习在洪水预报中的难点给出几点思考,对当前面临的挑战提出几点相应的解决方案,以便更好地在洪水预报领域探索应用深度学习技术。 展开更多
关键词 深度学习 洪水预报 定量预报 概率预报 耦合物理模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部