期刊文献+
共找到1,224篇文章
< 1 2 62 >
每页显示 20 50 100
Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model 被引量:1
1
作者 Runhua YANG Jing GUO Lars Peter RIISHФJGAARD 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第1期33-44,共12页
In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absenc... In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed. 展开更多
关键词 forecast error statistics estimation data analysis forecast error covariance model
在线阅读 下载PDF
Analysis on the Reason of Local Heavy Rainstorm Forecast Error in the Subtropical High Control 被引量:2
2
作者 LV Xiao-hua DAI Jin +1 位作者 WU Jin-hua LI Wen-ming 《Meteorological and Environmental Research》 CAS 2011年第2期13-17,共5页
[Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional gro... [Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional ground observation data, the upper air sounding data, T639, T213 and European Center (ECMWF) numerical prediction product data, GFS precipitation forecast product of U.S. National Center for Environmental Prediction, the weather situation, physical quantity field in a heavy rainstorm process which happened in the north of Shaoyang at night on August 5, 2010 were fully analyzed. Based on the numerical analysis forecast product data, the reason of heavy rainstorm forecast error in the subtropical high was comprehensively analyzed by using the comparison and analysis method of forecast and actual situation. [Result] The forecasters didn’t deeply and carefully analyze the weather situation. On the surface, 500 hPa was controlled by the subtropical high, but there was the weak shear line in 700 and 850 hPa. Moreover, they neglected the influences of weak cold air and easterlies wave. The subtropical high quickly weakened, and the system adjustment was too quick. The wind field variations in 850, 700 and 500 hPa which were forecasted by ECMWF had the big error with the actual situation. It was by east about 2 longitudes than the actual situation. In summer forecast, they only considered the intensity and position variations of 500 hPa subtropical high, and neglected the situation variations in the middle, low levels and on the ground. It was the most key element which caused the rainstorm forecast error in the subtropical high. The forecast error of numerical forecast products on the height field situation variation was big. The precipitation forecasts of Japan FSAS, U.S. National Center for Environmental Prediction GFS, T639 and T213 were all small. The humidity field forecast value of T639 was small. In the rainstorm forecast, the local rainstorm forecast index and method weren’t used in the forecast practice. In the precipitation forecast process, they only paid attention to the score prediction of station and didn’t value the non-site prediction. Some important physical quantity factors weren’t carefully studied. [Conclusion] The research provided the reference basis for the forecast and early warning of local heavy rainstorm. 展开更多
关键词 Heavy rainstorm Subtropical high forecast error Reason analysis China
在线阅读 下载PDF
Partition of Forecast Error into Positional and Structural Components
3
作者 Isidora JANKOV Scott GREGORY +2 位作者 Sai RAVELA Zoltan TOTH Malaquías PEÑA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期1012-1019,共8页
Weather manifests in spatiotemporally coherent structures.Weather forecasts hence are affected by both positional and structural or amplitude errors.This has been long recognized by practicing forecasters(cf.,e.g.,Tro... Weather manifests in spatiotemporally coherent structures.Weather forecasts hence are affected by both positional and structural or amplitude errors.This has been long recognized by practicing forecasters(cf.,e.g.,Tropical Cyclone track and intensity errors).Despite the emergence in recent decades of various objective methods for the diagnosis of positional forecast errors,most routine verification or statistical post-processing methods implicitly assume that forecasts have no positional error.The Forecast Error Decomposition(FED)method proposed in this study uses the Field Alignment technique which aligns a gridded forecast with its verifying analysis field.The total error is then partitioned into three orthogonal components:(a)large scale positional,(b)large scale structural,and(c)small scale error variance.The use of FED is demonstrated over a month-long MSLP data set.As expected,positional errors are often characterized by dipole patterns related to the displacement of features,while structural errors appear with single extrema,indicative of magnitude problems.The most important result of this study is that over the test period,more than 50%of the total mean sea level pressure forecast error variance is associated with large scale positional error.The importance of positional error in forecasts of other variables and over different time periods remain to be explored. 展开更多
关键词 forecast error orthogonal decomposition positional STRUCTURAL
在线阅读 下载PDF
The Relationship between Deterministic and Ensemble Mean Forecast Errors Revealed by Global and Local Attractor Radii
4
作者 Jie FENG Jianping LI +2 位作者 Jing ZHANG Deqiang LIU Ruiqiang DING 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第3期271-278,339,共9页
It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the rel... It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the relationship between their forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two attractor statistics—namely, the global and local attractor radii(GAR and LAR, respectively)—are applied to reveal the relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to approach2^(1/2) with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic forecast errors in individual cases. 展开更多
关键词 attractor radius ensemble forecasting ensemble mean forecast error saturation
在线阅读 下载PDF
Possible Sources of Forecast Errors Generated by the Global/Regional Assimilation and Prediction System for Landfalling Tropical Cyclones.PartⅠ:Initial Uncertainties 被引量:5
5
作者 Feifan ZHOU Munehiko YAMAGUCHI Xiaohao QIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第7期841-851,共11页
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made ... This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfaIling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required. 展开更多
关键词 tropical cyclone track forecast error diagnosis Global/Regional Assimilation and Prediction System initialuncertainty
在线阅读 下载PDF
Day-Ahead Probabilistic Load Flow Analysis Considering Wind Power Forecast Error Correlation
6
作者 Qiang Ding Chuancheng Zhang +4 位作者 Jingyang Zhou Sai Dai Dan Xu Zhiqiang Luo Chengwei Zhai 《Energy and Power Engineering》 2017年第4期292-299,共8页
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration... Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm. 展开更多
关键词 Wind Power Time Series Model forecast error Distribution forecast error CORRELATION PROBABILISTIC Load Flow Gram-Charlier Expansion
在线阅读 下载PDF
How Do Deep Learning Forecasting Models Perform for Surface Variables in the South China Sea Compared to Operational Oceanography Forecasting Systems?
7
作者 Ziqing ZU Jiangjiang XIA +6 位作者 Xueming ZHU Marie DREVILLON Huier MO Xiao LOU Qian ZHOU Yunfei ZHANG Qing YANG 《Advances in Atmospheric Sciences》 2025年第1期178-189,共12页
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using... It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs. 展开更多
关键词 forecast error deep learning forecasting model operational oceanography forecasting system VALIDATION intercomparison
在线阅读 下载PDF
Risk analysis of dynamic control of reservoir limited water level by considering flood forecast error 被引量:16
8
作者 ZHANG YanPing WANG GuoLi +1 位作者 PENG Yong ZHOU HuiCheng 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第7期1888-1893,共6页
Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively inc... Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively increased by using flood forecast information and flood control forecast operation mode. In this paper, Dahuofang Reservoir is selected as a case study. At first, the distribution pattern and the bound of forecast error which is a key source of risk are analyzed. Then, based on the definition of flood risk, the risk of dynamic control of reservoir flood limited water level within different flood forecast error bounds is studied. The results show that, the dynamic control of reservoir flood limited water level with flood forecast information can increase the floodwater utilization rate without increasing flood control risk effectively and it is feasible in practice. 展开更多
关键词 flood forecast error flood control forecast operation mode dynamic control of flood limited water level risk analysis Dahuofang Reservoir
原文传递
Mixed Aleatory-epistemic Uncertainty Modeling of Wind Power Forecast Errors in Operation Reliability Evaluation of Power Systems 被引量:6
9
作者 Jinfeng Ding Kaigui Xie +4 位作者 Bo Hu Changzheng Shao Tao Niu Chunyan Li Congcong Pan 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1174-1183,共10页
As the share of wind power in power systems continues to increase, the limited predictability of wind power generation brings serious potential risks to power system reliability. Previous research works have generally... As the share of wind power in power systems continues to increase, the limited predictability of wind power generation brings serious potential risks to power system reliability. Previous research works have generally described the uncertainty of wind power forecast errors(WPFEs) based on normal distribution or other standard distribution models, which only characterize the aleatory uncertainty. In fact, epistemic uncertainty in WPFE modeling due to limited data and knowledge should also be addressed. This paper proposes a multi-source information fusion method(MSIFM) to quantify WPFEs when considering both aleatory and epistemic uncertainties. An extended focal element(EFE) selection method based on the adequacy of historical data is developed to consider the characteristics of WPFEs. Two supplementary expert information sources are modeled to improve the accuracy in the case of insufficient historical data. An operation reliability evaluation technique is also developed considering the proposed WPFE model. Finally,a double-layer Monte Carlo simulation method is introduced to generate a time-series output of the wind power. The effectiveness and accuracy of the proposed MSIFM are demonstrated through simulation results. 展开更多
关键词 Wind power forecast error(WPFE) epistemic uncertainty multi-source information fusion method(MSIFM) operation reliability extended focal element(EFE) double-layer Monte Carlo simulation
原文传递
Large tropical cyclone track forecast errors of global numerical weather prediction models in western North Pacific basin 被引量:1
10
作者 Chi Kit Tang Johnny C.L.Chan Munehiko Yamaguchi 《Tropical Cyclone Research and Review》 2021年第3期151-169,共19页
Although tropical cyclone(TC)track forecast errors(TFEs)of operational warning centres have substantially decreased in recent decades,there are still many cases with large TFEs.The International Grand Global Ensemble(... Although tropical cyclone(TC)track forecast errors(TFEs)of operational warning centres have substantially decreased in recent decades,there are still many cases with large TFEs.The International Grand Global Ensemble(TIGGE)data are used to study the possible reasons for the large TFE cases and to compare the performance of different numerical weather prediction(NWP)models.Forty-four TCs in the western North Pacific during the period 2007-2014 with TFEs(+24 to+120 h)larger than the 75 th percentile of the annual error distribution(with a total of 93 cases)are identified.Four categories of situations are found to be associated with large TFEs.These include the interaction of the outer structure of the TC with tropical weather systems,the intensity of the TC,the extension of the subtropical high(SH)and the interaction with the westerly trough.The crucial factor of each category attributed to the large TFE is discussed.Among the TIGGE model predictions,the models of the European Centre for Medium-Range Weather Forecasts and the UK Met Office generally have a smaller TFE.The performance of different models in different situations is discussed. 展开更多
关键词 CONSENSUS Numerical weather prediction forecast error Tropical cyclones Track prediction TIGGE WGNE
原文传递
THE IMPACT OF NOAA SATELLITE SOUNDING DATA ON THE SYSTEMATIC FORECAST ERROR OF B-MODEL
11
作者 王宗皓 毛建平 +3 位作者 黄继红 ArnoldGruber AlbertThomasell TanSunChen 《Acta meteorologica Sinica》 SCIE 1992年第4期421-432,共12页
This paper is to examine the impact of satellite data on the systematic error of operational B-model in China.Em- phasis is put on the study of the impact of satellite sounding data on forecasts of the sea level press... This paper is to examine the impact of satellite data on the systematic error of operational B-model in China.Em- phasis is put on the study of the impact of satellite sounding data on forecasts of the sea level pressure field and 500 hPa height.The major findings are as follows. (1)The B-model usually underforecasts the strength of features in the sea level pressure(SLP)field,i.e.pressures are too low near high pressure systems and too high near low pressure systems. (2)The nature of the systematic errors found in the 500 hPa height forecasts is not as clear cut as that of the SLP forecasts,but most often the same type of pattern is seen,i.e.,the heights in troughs are not low enough and those in ridges are not high enough. (3)The use of satellite data in the B-model analysis/forecast system is found to have an impact upon the model's forecast of SLP and 500 hPa height.Systematic errors in the vicinity of surface lows/500 hPa troughs over the oceans are usually found to be significantly reduced.A less conclusive mix of positive and negative impacts was found for all other types of features. 展开更多
关键词 satellite data IMPACT systematic forecast error B-model
在线阅读 下载PDF
SYSTEMATIC FORECAST ERROR IN U.S.NMC OPERATIONAL SPECTRAL MODEL
12
作者 牟惟丰 宋文英 《Acta meteorologica Sinica》 SCIE 1989年第5期623-634,共12页
The distribution of monthly mean error of NMC model forecasts and its seasonal variation are investi- gated.The ratio of monthly mean error to standard deviation is used here to find out that the region where a correc... The distribution of monthly mean error of NMC model forecasts and its seasonal variation are investi- gated.The ratio of monthly mean error to standard deviation is used here to find out that the region where a correction of systematic error is needed and appropriate is mainly in low latitudes.The improvement,after the model's vertical resolution and some physical parameters were changed from April 1985,is investigated,and the NMC operational model forecasts have also compared with those of ECMWF. 展开更多
关键词 SYSTEMATIC forecast error IN U.S.NMC OPERATIONAL SPECTRAL MODEL ECMWF forecast THAN
在线阅读 下载PDF
Extended Range(10–30 Days) Heavy Rain Forecasting Study Based on a Nonlinear Cross-Prediction Error Model 被引量:5
13
作者 XIA Zhiye CHEN Hongbin +1 位作者 XU Lisheng WANG Yongqian 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1583-1591,共9页
Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combin... Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data. 展开更多
关键词 nonlinear cross prediction error extended range forecasting phase space
在线阅读 下载PDF
ANALYSIS ON ABNORMAL TROPICAL CYCLONE TRACK FORECAST ERROR OF ECMWF-IFS IN THE WESTERN NORTH PACIFIC
14
作者 WEI XU LIANGBO QI +1 位作者 YUGANG DU LI XIA 《Tropical Cyclone Research and Review》 2016年第1期12-22,共11页
By considering distance error and direction error, Tropical Cyclone(TC) track forecasts with abnormal forecast error(AFE) at lead time of 48 h by ECMWF-IFS are selected out from 2010 to 2013. Factors closely related t... By considering distance error and direction error, Tropical Cyclone(TC) track forecasts with abnormal forecast error(AFE) at lead time of 48 h by ECMWF-IFS are selected out from 2010 to 2013. Factors closely related to AFE cases are investigated. There are 7 factors which are closely related to AFE cases. The most common one is Landfall or Passing through big island(LP) which appears 21 times among all 55 AFE cases. But LP often coexists with other factors to cause AFE cases. The second in the list is Coexistence with other TC or cloud cluster(CO) which affects more than one third of all AFE cases. Besides those 7 factors, fault of TCtracker also results in some AFE cases. There are no simple indicators for forecasters to anticipate a possible AFE case in advance. It seems that forecasters still have to anticipate AFE cases by their experiences and with synthetic analysis on all available data. Some possible ways to improve AFE cases are discussed and proposed to forecasters. That includes relying on products from ensemble prediction system or guidance from other models, simple translation process and manual analysis of TC track by forecasters under some circumstances. 展开更多
关键词 track forecast ABNORMAL forecast error TROPICAL CYCLONE ECMWF-IFS
原文传递
STUDY OF THE EFFECTS OF REDUCING SYSTEMATIC ERRORS ON MONTHLY REGIONAL CLIMATE DYNAMICAL FORECAST
15
作者 曾新民 席朝笠 《Journal of Tropical Meteorology》 SCIE 2009年第1期102-105,共4页
A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated fo... A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast. 展开更多
关键词 climatology monthly regional climate dynamical forecast systematic errors
在线阅读 下载PDF
基于图神经网络的短期风电功率群体预测方法
16
作者 杨茂 郭镇鹏 +4 位作者 王达 张薇 王勃 江任贤 苏欣 《电力系统保护与控制》 北大核心 2025年第19期79-88,共10页
为降低风电波动性对电力系统的影响,提出了计及时空关联性的大规模风电场群短期功率预测方法,同步输出所有风电场的短期功率预测结果。首先,提出了综合考虑风速、风向的空间相关性评价指标,进一步建立表征风电场群时空相关性的图拓扑结... 为降低风电波动性对电力系统的影响,提出了计及时空关联性的大规模风电场群短期功率预测方法,同步输出所有风电场的短期功率预测结果。首先,提出了综合考虑风速、风向的空间相关性评价指标,进一步建立表征风电场群时空相关性的图拓扑结构。然后,构建一种深度残差图注意力网络挖掘多风电场间的时空相关特征,在训练过程中保存数据中蕴含的时空价值信息。最后,提出了虚假预测评价指标,评估场站预测功率在汇聚成集群预测功率时的虚假预测成分,使场群预测结果评价更加公平。以中国吉林省的某20个风电场组成的风电场群为研究对象开展实验,实验结果表明提出的风电功率预测模型的日前功率预测准确率达到91.68%。 展开更多
关键词 图注意力网络 深度残差网络 时空相关性 短期风电功率预测 误差评估
在线阅读 下载PDF
Improvement in Background Error Covariances Using Ensemble Forecasts for Assimilation of High-Resolution Satellite Data
17
作者 Seung-Woo LEE Dong-Kyou LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期758-774,共17页
Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper di... Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated. 展开更多
关键词 3DVAR background error covariances retrieved satellite data assimilation ensemble forecasts.
在线阅读 下载PDF
洪水预报的比例系数系统响应误差修正方法 被引量:2
18
作者 瞿思敏 陆威村 +4 位作者 蒋思军 陈辉 石朋 虞鸿 张锏 《水资源保护》 北大核心 2025年第2期88-94,105,共8页
针对系统微分响应误差修正方法在水文预报中同时修正多个变量出现的信息不足的问题,考虑各变量误差在不同时段对洪水预报精度的影响,提出了比例系数系统响应误差修正方法。以同时修正新安江模型各雨量单元降水量为例,分别采用湿润区(长... 针对系统微分响应误差修正方法在水文预报中同时修正多个变量出现的信息不足的问题,考虑各变量误差在不同时段对洪水预报精度的影响,提出了比例系数系统响应误差修正方法。以同时修正新安江模型各雨量单元降水量为例,分别采用湿润区(长诏水库流域)的理想模型和半干旱半湿润区(日照水库流域)的实际流域进行了检验。结果表明:经过误差修正,湿润区理想模型和半干旱半湿润区实际流域在次洪流量模拟中的平均纳什效率系数分别从0.906和0.573提升至0.994和0.809,比例系数系统响应误差修正方法修正效果明显,具有跨气候区的强适应性。 展开更多
关键词 洪水预报 系统微分响应 误差修正 比例系数 长诏水库流域 日照水库流域
在线阅读 下载PDF
基于深度学习的山丘区中小河流洪水预报误差校正方法 被引量:3
19
作者 白云鹏 郑爱民 +3 位作者 王文川 赵延伟 徐冬梅 杜昀宸 《水文》 北大核心 2025年第1期37-44,共8页
中小河流产汇流情况复杂,洪水预报难度很大。为了提高中小河流洪水预报的精度,以河北省邢台市坡底流域为研究对象,分别基于蓄满产流和混合产流模式构建分布式模型进行降雨径流模拟。分别采用LSTM、Transformer、Transformer+LSTM叠加模... 中小河流产汇流情况复杂,洪水预报难度很大。为了提高中小河流洪水预报的精度,以河北省邢台市坡底流域为研究对象,分别基于蓄满产流和混合产流模式构建分布式模型进行降雨径流模拟。分别采用LSTM、Transformer、Transformer+LSTM叠加模型(TFLS)构建校正模型,采用差分进化算法对超参数进行优化。以实测降雨和分布式模型模拟结果为输入,对各时段的残差进行拟合,进而对径流模拟结果进行校正。研究结果表明,在17场洪水模拟结果中,混合产流模型表现优于蓄满产流。与混合产流模型相比,经TFLS校正后的模型洪峰误差不超过20%的场次从9场增加至12场,占全部场次的70.6%,确定性系数不低于0.8的场次从5场增加到9场,占比为52.9%。TFLS模型在流量不超过500 m^(3)/s时的校正效果优于LSTM和Transformer模型,LSTM模型对流量在500 m^(3)/s及以上的校正效果略优于其它模型。 展开更多
关键词 分布式模型 洪水预报 误差校正 LSTM TRANSFORMER
在线阅读 下载PDF
基于系统响应的马斯京根连续演算误差修正方法
20
作者 司伟 黄思琦 +5 位作者 瞿思敏 张永康 程翔 朱彦泽 李昂 郑佳乐 《水资源保护》 北大核心 2025年第5期89-95,共7页
针对近年来径流式电站、船闸等河道型水利工程持续修建导致传统马斯京根法在新安江模型流域洪水预报应用中精度下降的问题,引入并改进了系统响应误差修正方法,提出了基于系统响应的马斯京根连续演算误差修正方法。该方法根据预报断面实... 针对近年来径流式电站、船闸等河道型水利工程持续修建导致传统马斯京根法在新安江模型流域洪水预报应用中精度下降的问题,引入并改进了系统响应误差修正方法,提出了基于系统响应的马斯京根连续演算误差修正方法。该方法根据预报断面实测流量和计算流量的差值计算修正比例系数,将其应用于各河段节点,对河道汇流初值进行实时动态修正。以受梯级船闸影响的富春江流域主河道为例进行实例分析,结果表明:修正后的洪水预报精度明显提高,修正方法对洪峰的修正效果最好,对于双峰或多峰洪水,特别是受水利工程调控影响较大的洪水过程具有显著的修正效果;传统马斯京根法在加入系统响应误差修正方法后,可有效降低河道型水利工程对洪水预报中河道汇流演算的影响,提高流域洪水预报精度,同时解决了传统系统响应误差修正方法中信息来源与待修正变量之间信息维度不对称的问题。 展开更多
关键词 洪水预报 马斯京根法 系统响应 误差修正 河道汇流演算 富春江流域
在线阅读 下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部