期刊文献+
共找到55,955篇文章
< 1 2 250 >
每页显示 20 50 100
Forecast errors of tropical cyclone track and intensity by the China Meteorological Administration from 2013 to 2022
1
作者 Huanmujin Yuan Hong Wang +2 位作者 Yubin Li Kevin K.W.Cheung Zhiqiu Gao 《Atmospheric and Oceanic Science Letters》 2026年第1期72-77,共6页
This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administratio... This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development. 展开更多
关键词 forecast error Tropical cyclone TRACK INTENSITY
在线阅读 下载PDF
Day-Ahead Electricity Price Forecasting Using the XGBoost Algorithm: An Application to the Turkish Electricity Market
2
作者 Yagmur Yılan Ahad Beykent 《Computers, Materials & Continua》 2026年第1期1649-1664,共16页
Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning ... Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning methods,accurate and reliable price forecasts can be achieved.This study forecasts day-ahead prices in Türkiye’s electricity market using eXtreme Gradient Boosting(XGBoost).We benchmark XGBoost against four alternatives—Support Vector Machines(SVM),Long Short-Term Memory(LSTM),Random Forest(RF),and Gradient Boosting(GBM)—using 8760 hourly observations from 2023 provided by Energy Exchange Istanbul(EXIST).All models were trained on an identical chronological 80/20 train–test split,with hyperparameters tuned via 5-fold cross-validation on the training set.XGBoost achieved the best performance(Mean Absolute Error(MAE)=144.8 TRY/MWh,Root Mean Square Error(RMSE)=201.8 TRY/MWh,coefficient of determination(R^(2))=0.923)while training in 94 s.To enhance interpretability and identify key drivers,we employed Shapley Additive Explanations(SHAP),which highlighted a strong association between higher prices and increased natural-gas-based generation.The results provide a clear performance benchmark and practical guidance for selecting forecasting approaches in day-ahead electricity markets. 展开更多
关键词 Day-ahead electricity price forecasting machine learning XGBoost SHAP
在线阅读 下载PDF
A novel deep learning-based framework for forecasting
3
作者 Congqi Cao Ze Sun +2 位作者 Lanshu Hu Liujie Pan Yanning Zhang 《Atmospheric and Oceanic Science Letters》 2026年第1期22-26,共5页
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep... Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance. 展开更多
关键词 Weather forecasting Deep learning Semantic segmentation models Learnable Gaussian noise Cascade prediction
在线阅读 下载PDF
How Do Deep Learning Forecasting Models Perform for Surface Variables in the South China Sea Compared to Operational Oceanography Forecasting Systems?
4
作者 Ziqing ZU Jiangjiang XIA +6 位作者 Xueming ZHU Marie DREVILLON Huier MO Xiao LOU Qian ZHOU Yunfei ZHANG Qing YANG 《Advances in Atmospheric Sciences》 2025年第1期178-189,共12页
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using... It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs. 展开更多
关键词 forecast error deep learning forecasting model operational oceanography forecasting system VALIDATION intercomparison
在线阅读 下载PDF
Demand Forecasting Tool Driving the Digital Twin of a Perishable Food Process
5
作者 Laura Lucantoni Stefano Croci +3 位作者 Giovanni Mazzuto Filippo Emanuele Ciarapica Maurizio Bevilacqua Severino Perenzoni 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2356-2358,共3页
Dear Editor,The food industry emphasizes improving demand forecasting to align production with consumer needs and reduce waste.This letter thus presents a study that integrates artificial intelligence(AI)and digital t... Dear Editor,The food industry emphasizes improving demand forecasting to align production with consumer needs and reduce waste.This letter thus presents a study that integrates artificial intelligence(AI)and digital twin(DT)technologies to enhance decision-making and efficiency in food production.A data-driven DT was implemented in an Italian company for Raspberry production planning,based on a daily demand forecasting tool powered by a dynamic extreme gradient boosting(XGBoost)algorithm.The model achieved a mean absolute percentage error(MAPE)of 16.37%with 1.69 average of absolute extra working hours(AEW)and a tracking signal(TS)range of[−1.9,+4.3]. 展开更多
关键词 improving demand forecasting demand forecasting daily demand forecasting tool dynamic extreme gradient artificial intelligence artificial intelligence ai align production digital twin dt technologies
在线阅读 下载PDF
Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning
6
作者 Nina HORAT Sina KLERINGS Sebastian LERCH 《Advances in Atmospheric Sciences》 2025年第2期297-312,共16页
Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi... Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies. 展开更多
关键词 solar forecasting POST-PROCESSING probabilistic forecasting machine learning model chain
在线阅读 下载PDF
Does sustainability disclosure improve analysts’forecast accuracy?Evidence from European banks
7
作者 Albert Acheampong Tamer Elshandidy 《Financial Innovation》 2025年第1期693-724,共32页
In this study,we investigate the extent to which sustainability disclosures in the narrative sections of European banks’annual reports improve analysts’forecasting accuracy.We capture sustainability disclosures with... In this study,we investigate the extent to which sustainability disclosures in the narrative sections of European banks’annual reports improve analysts’forecasting accuracy.We capture sustainability disclosures with a machine learning approach and use forecast errors as a proxy for analysts’forecast accuracy.Our results suggest that sustainability disclosures significantly improve analysts’forecasting accuracy by reducing forecast errors.In a further analysis,we also find that the introduction of Directive 2014/95/European Union is associated with increased disclosure content,which reduces forecast error.Collectively,our results suggest that sustainability disclosures improve forecast accuracy,and the introduction of the new EU directive strengthens this improvement.These results hold after several robustness tests.Our findings have important implications for market participants and policymakers. 展开更多
关键词 Sustainability disclosure Machine learning Analyst forecast accuracy forecast error European banks EU Directive
在线阅读 下载PDF
Time-Series Stock Price Forecasting Based on Neural Networks:A Comprehensive Survey
8
作者 Guangyang TIAN Yin YANG Shiping WEN 《Artificial Intelligence Science and Engineering》 2025年第4期255-277,共23页
As financial markets grow increasingly complex and volatile,timeseriesbased stock price forecasting has become a critical research focus in the field of finance.Traditional forecasting methods face significant limitat... As financial markets grow increasingly complex and volatile,timeseriesbased stock price forecasting has become a critical research focus in the field of finance.Traditional forecasting methods face significant limitations in handling nonlinear and high-dimensional data,while neural networks(NNs)have demonstrated great potential due to their powerful feature extraction and pattern recognition capabilities.Although several existing surveys discuss the applications of NNs in stock forecasting,they often lack a detailed examination of models that use time-series data as input and fail to cover the latest research developments.In response,this paper reviews relevant literature from 2015 to 2025 and classifies timeseriesbased stock forecasting methods into four categories:NNs,recurrent NNs(RNNs),convolutional NNs(CNNs),Transformers and other models.We analyze their performance under different market conditions,highlight strengths and limitations,and identify recent trends in model design.Our findings show that hybrid architectures and attention-based models consistently achieve superior forecasting stability and adaptability across volatile market scenarios.This survey offers a systematic reference for researchers and practitioners and outlines promising future research directions. 展开更多
关键词 stock price forecasting time-series forecasting neural networks Trans-former deep learning
在线阅读 下载PDF
China advances in weather forecasting,disaster warning
9
作者 万娜 李荣 《疯狂英语(初中天地)》 2025年第4期26-29,共4页
The China Meteorological Administration(CMA)said that in the last five years,China has made big improvements in its weather services.This includes better weather forecasts and ways to protect people from disasters.
关键词 weather forecasting ways protect people disasters disaster warning better weather forecasts weather services China Meteorological Administration improvements
在线阅读 下载PDF
An Objective Method for Temperature and Wind Forecast at the Venues of the 14 th National Winter Games
10
作者 Xuefeng YANG Sitong LIU 《Meteorological and Environmental Research》 2025年第2期59-61,共3页
According to the demand for weather forecast at the venues of the 14 th National Winter Games,based on the data of the fine grid model of the European Centre(EC)and RMAPS model,as well as the real-time observation dat... According to the demand for weather forecast at the venues of the 14 th National Winter Games,based on the data of the fine grid model of the European Centre(EC)and RMAPS model,as well as the real-time observation data of the competition fields,a dynamic optimal correction method was proposed to improve the accuracy rate of temperature and wind speed prediction.Through techniques such as deviation correction and univariate linear regression,mathematical models applicable to different competition regions were constructed,and the effective correction of objective forecast products within 0-120 h were realized.The results show that this method significantly improved the accuracy rate of the prediction of temperature,wind speed and extreme wind speed,and the effect was more obvious especially when the model performance was unstable.Meanwhile,terrain and climate background had a significant impact on the correction effect.This study provides new technical support for mountain meteorological forecast. 展开更多
关键词 Temperature forecast Wind speed forecast Objective correction Dynamic optimum Mountain meteorology
在线阅读 下载PDF
High-skill members in the subseasonal forecast ensemble of extreme cold events in East Asia
11
作者 Xinli Liu Jingzhi Su +1 位作者 Yihao Peng Xiaolei Liu 《Atmospheric and Oceanic Science Letters》 2025年第6期22-28,共7页
Subseasonal forecasting of extreme events is crucial for early warning systems.However,the forecast skills for extreme events are limited.Taking the extreme cold events in January 2018 as a specific example,and analyz... Subseasonal forecasting of extreme events is crucial for early warning systems.However,the forecast skills for extreme events are limited.Taking the extreme cold events in January 2018 as a specific example,and analyzing the 34 extreme cold events in East Asia from 1998 to 2020,the authors evaluated the forecast skills of the ECMWF model ensemble members on subseasonal time scales.The results show that while the ensemble mean has limited skills for forecasting extreme cold events at the 3-week lead time,some individual members demonstrate high forecast skills.For most extreme cold events,there are>10%of members among the total ensembles that can well predict the rapid temperature transitions at the 14-day lead time.This highlights the untapped potential of the ECMWF model to forecast extreme cold events on subseasonal time scales.High-skill ensemble members rely on accurate predictions of atmospheric circulation patterns(500-hPa geopotential height,mean sea level pressure)and key weather systems,including the Ural Blocking and Siberian High,that influence extreme cold events. 展开更多
关键词 Subseasonal forecast forecast skill Ensemble members Extreme cold event
在线阅读 下载PDF
Evaluation of WRF-based Convection-Permitting Ensemble Forecasts for an Extreme Rainfall Event in East China during the Mei-yu Season
12
作者 Chengyi ZHANG Mengwen WU Yali LUO 《Advances in Atmospheric Sciences》 2025年第10期2102-2124,共23页
This study focuses on an extreme rainfall event in East China during the mei-yu season,in which the capital city(Nanjing)of Jiangsu Province experienced a maximum 14-h rainfall accumulation of 209.6 mm and a peak hour... This study focuses on an extreme rainfall event in East China during the mei-yu season,in which the capital city(Nanjing)of Jiangsu Province experienced a maximum 14-h rainfall accumulation of 209.6 mm and a peak hourly rainfall of 118.8 mm.The performance of two sets of convection-permitting ensemble forecast systems(CEFSs),each with 30 members and a 3-km horizontal grid spacing,is evaluated.The CEFS_ICBCs,using multiple initial and boundary conditions(ICs and BCs),and the CEFS_ICBCs Phys,which incorporates both multi-physics schemes and ICs/BCs,are compared to the CMA-REPS(China Meteorological Administration-Regional Ensemble Prediction System)with a coarser 10-km grid spacing.The two CEFSs demonstrate more uniform rank histograms and lower Brier scores(with higher resolution),improving precipitation intensity predictions and providing more reliable probability forecasts,although they overestimate precipitation over Mt.Dabie.It is challenging for the CEFSs to capture the evolution of mesoscale rainstorms that are known to be related to the errors in predicting the southwesterly low-level winds.Sensitivity experiments reveal that the microphysics and radiation schemes introduce considerable uncertainty in predicting the intensity and location of heavy rainfall in and near Nanjing and Mt.Dabie.In particular,the Asymmetric Convection Model 2(ACM2)planetary boundary layer scheme combined with the Pleim-Xiu surface layer scheme tends to produce a biased northeastward extension of the boundary-layer jet,contributing to the northeastward bias of heavy precipitation around Nanjing in the CEFS_ICBCs. 展开更多
关键词 extreme rainfall mei-yu season convection-permitting ensemble forecasts forecast evaluation
在线阅读 下载PDF
Application of wavelet neural network with chaos theory for enhanced forecasting of pressure drop signals in vapor−liquid−solid fluidized bed evaporator
13
作者 Xiaoping Xu Ting Zhang +2 位作者 Zhimin Mu Yongli Ma Mingyan Liu 《Chinese Journal of Chemical Engineering》 2025年第2期67-81,共15页
The dynamics of vapor−liquid−solid(V−L−S)flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior,hindering accurate prediction of pressure drop signals.To address this challenge,this... The dynamics of vapor−liquid−solid(V−L−S)flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior,hindering accurate prediction of pressure drop signals.To address this challenge,this study proposes an innovative hybrid approach that integrates wavelet neural network(WNN)with chaos analysis.By leveraging the Cross-Correlation(C−C)method,the minimum embedding dimension for phase space reconstruction is systematically calculated and then adopted as the input node configuration for the WNN.Simulation results demonstrate the remarkable effectiveness of this integrated method in predicting pressure drop signals,advancing our understanding of the intricate dynamic phenomena occurring with V−L−S fluidized bed evaporators.Moreover,this study offers a novel perspective on applying advanced data-driven techniques to handle the complexities of multi-phase flow systems and highlights the potential for improved operational prediction and control in industrial settings. 展开更多
关键词 Wavelet neural network forecasting Chaos theory Phase space reconstruction Pressure drop forecasting Fluidized bed evaporator Multi-phase dynamics
在线阅读 下载PDF
Deep learning for air pollutant forecasting:opportunities,challenges,and future directions
14
作者 Chenliang Tao Yiheng Wang +2 位作者 Yuhao Wang Zhonghua Zheng Hongliang Zhang 《Frontiers of Environmental Science & Engineering》 2025年第12期263-277,共15页
Deep learning methods are increasingly employed to forecast air quality from an everincreasing stream of data and algorithms.However,the efficacy of current approaches may be questionable when evaluated not solely in ... Deep learning methods are increasingly employed to forecast air quality from an everincreasing stream of data and algorithms.However,the efficacy of current approaches may be questionable when evaluated not solely in terms of greater forecasting fidelity,but also concerning the decision-making process in pollution early warning.Here,rather than amending classical machine learning algorithms,we argue that now is the time to push the frontiers of air pollutant forecasting beyond state-of-the-art approaches.This can be achieved through near real-time assimilation of multiscale observations for laying the foundation of training data,enhanced attribution methods for impending heavy pollution,diagnostics for forecasting uncertainty,and advanced climate-chemistry emulators for improving seasonal forecasting.To harness this potential,it is essential to address several key challenges in deep learning methods,particularly generalization ability in extreme events,physics-informed interpretable approaches,and the mitigation technology of cumulative errors in multi-process coupled systems.This interdisciplinary endeavor will remain a central pursuit in the quest to anticipate and manage environmental change. 展开更多
关键词 Deep learning Air pollution forecasting Data assimilation Seasonal forecasting
原文传递
Sub-Seasonal Forecast of Global Marine Heatwaves Based on NUIST CFS1.1
15
作者 Jiale HU Jianxiang XU +3 位作者 Jing-Jia LUO Jiaqing XUE Yujie NIE Da ZHI 《Advances in Atmospheric Sciences》 2025年第7期1285-1300,共16页
Marine heatwaves(MHWs),which can exert devastating socioeconomic and ecological impacts,have attracted much public interest in recent years.In this study,we evaluate the sub-seasonal forecast skill of MHWs based on th... Marine heatwaves(MHWs),which can exert devastating socioeconomic and ecological impacts,have attracted much public interest in recent years.In this study,we evaluate the sub-seasonal forecast skill of MHWs based on the Nanjing University of Information Science&Technology Climate Forecast System version 1.1(NUIST CFS1.1)and analyze the related physical processes.Our results show that the model can accurately forecast the occurrence of MHWs on a global scale out to a lead time of 25 days.Notably,even at lead times of 51–55 days,the forecast skill in most tropical regions,as well as in the northeastern and southeastern Pacific,is superior to both random forecasts and persistence forecasts.Accurate predictions of sea level pressure,zonal currents,and mixed-layer depth are important for MHW forecasting.Furthermore,we also conduct forecast skill assessments for two well-documented MHW events.Due to its ability to correctly forecast the changes in heat flux anomalies at a lead time of 25 days,the model can accurately forecast the strong MHW event that occurred in the South China Sea in May–October 2020.However,the forecasting results were less than optimal for the strong MHW event that occurred along the Australian west coast in January–April 2011.Although the model accurately forecasts its occurrence,the forecast of its intensity is poor.Additionally,when the lead time exceeds 10 days,forecasts of the relevant physical processes of this MHW event are also inaccurate. 展开更多
关键词 marine heatwaves sub-seasonal forecast NUIST CFS1.1 source of forecast skill
在线阅读 下载PDF
Multivariate natural gas price forecasting model with feature selection,machine learning and chernobyl disaster optimizer
16
作者 Pei Du Xuan-Kai Zhang +1 位作者 Jun-Tao Du Jian-Zhou Wang 《Petroleum Science》 2025年第11期4823-4837,共15页
The significance of accurately forecasting natural gas prices is far-reaching and significant,not only for the stable operation of the energy market,but also as a key element in promoting sustainable development and a... The significance of accurately forecasting natural gas prices is far-reaching and significant,not only for the stable operation of the energy market,but also as a key element in promoting sustainable development and addressing environmental challenges.However,natural gas prices are affected by multiple source factors,presenting complex,unstable nonlinear characteristics hindering the improvement of the prediction accuracy of existing models.To address this issue,this study proposes an innovative multivariate combined forecasting model for natural gas prices.Initially,the study meticulously identifies and introduces 16 variables impacting natural gas prices across five crucial dimensions:the production,marketing,commodities,political and economic indicators of the United States and temperature.Subsequently,this study employs the least absolute shrinkage and selection operator,grey relation analysis,and random forest for dimensionality reduction,effectively screening out the most influential key variables to serve as input features for the subsequent learning model.Building upon this foundation,a suite of machine learning models is constructed to ensure precise natural gas price prediction.To further elevate the predictive performance,an intelligent algorithm for parameter optimization is incorporated,addressing potential limitations of individual models.To thoroughly assess the prediction accuracy of the proposed model,this study conducts three experiments using monthly natural gas trading prices.These experiments incorporate 19 benchmark models for comparative analysis,utilizing five evaluation metrics to quantify forecasting effectiveness.Furthermore,this study conducts in-depth validation of the proposed model's effectiveness through hypothesis testing,discussions on the improvement ratio of forecasting performance,and case studies on other energy prices.The empirical results demonstrate that the multivariate combined forecasting method developed in this study surpasses other comparative models in forecasting accuracy.It offers new perspectives and methodologies for natural gas price forecasting while also providing valuable insights for other energy price forecasting studies. 展开更多
关键词 Natural gas price forecasting Multivariate forecasting model Machine learning Chernobyl disaster optimizer
原文传递
SP-RF-ARIMA:A sparse random forest and ARIMA hybrid model for electric load forecasting
17
作者 Kamran Hassanpouri Baesmat Farhad Shokoohi Zeinab Farrokhi 《Global Energy Interconnection》 2025年第3期486-496,共11页
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment... Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method. 展开更多
关键词 optimizing production capacityimproving operational efficiencyand sparse random forest hybrid model electric load forecasting accurate electric load forecasting elf renewable energy integration ARIMA feature selection
在线阅读 下载PDF
OPERATIONAL ENSEMBLE FORECASTING AND ANALYSIS OF TROPICAL CYCLONES OVER THE WESTERN NORTH PACIFIC(INCLUDING THE SOUTH CHINA SEA) 被引量:2
18
作者 涂小萍 姚日升 +1 位作者 张春花 陈有龙 《Journal of Tropical Meteorology》 SCIE 2014年第1期87-92,共6页
Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) durin... Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast. 展开更多
关键词 weather forecast forecast method consensus forecast tropical cyclones operational forecast
在线阅读 下载PDF
A Hybrid Handover Forecasting Mechanism Based on Fuzzy Forecasting Model in Cellular Networks 被引量:1
19
作者 Hua Qu Yanpeng Zhang +2 位作者 Jihong Zhao Gongye Ren Weipeng Wang 《China Communications》 SCIE CSCD 2018年第6期84-97,共14页
As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communica... As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communication services. In order to guarantee the user experience, the handover decision should be made timely and reasonably. To achieve this goal, this paper presents a hybrid handover forecasting mechanism, which contains long-term and short-term forecasting models. The proposed mechanism could cooperate with the standard mechanisms, and improve the performance of standard handover decision mechanisms. Since most of the parameters involved are imprecise, fuzzy forecasting model is applied for dealing with predictions of them. The numerical results indicate that the mechanism could significantly decrease the rate of ping-pong handover and the rate of handover failure. 展开更多
关键词 handover forecasting mechanism fuzzy forecasting model long-term forecasting model short-term forecasting model
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
20
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部