Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa...Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.展开更多
In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternativ...In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves, as long as the shifting speed falls in a finite interval where the endpoints are obtained from KPP-Fisher speeds. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle.展开更多
Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blad...Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blades is essential in the routine design. In this work, the Time Collocation Method (TCM) which uses the cubic B-spline to approximate flow variables is first thoroughly studied and then combined with the moving grid technique to analyze aeroelastic flow fields. To showcase its advantage over the Harmonic Balance (HB) method which uses a truncated Fourier series to approximately represent flow variables, a matrix analysis of the one-dimensional advection equation is first performed. The results of stability analysis are verified by two test cases: the Durham linear oscillating turbine cascade and a two-blade-row transonic compressor. The vibration of the blade of the first case is driven by a motor while the excitation force of the second case comes from blade row interaction. The results show that the time collocation method has a faster convergence rate and is more stable than the harmonic balance method, especially for cases with a large maximum grid reduced frequency. More importantly, the time collocation method is capable of accurately predicting aeroelastic performance of turbomachinery blades.展开更多
Revealing the combined influence of interfacial damage and nonlinear factors on the forced vibration is significant for the stability design of fluid-conveying pipes, which are usually assembled in aircraft. The nonli...Revealing the combined influence of interfacial damage and nonlinear factors on the forced vibration is significant for the stability design of fluid-conveying pipes, which are usually assembled in aircraft. The nonlinear forced resonance of fluid-conveying layered pipes with a weak interface and a movable boundary under the external excitation is studied. The pipe is simply supported at both ends, with one end subject to a viscoelastic boundary constraint described by KelvinVoigt model. The weak interface in the pipe is considered in the refined displacement field of the layered pipe employing the interfacial cohesive law. The governing equations are derived by Hamilton's variational principle. Geometric nonlinearities including nonlinear curvature, longitudinal inertia nonlinearity and nonlinear constraint force are comprehensively considered during the theoretical derivation. Amplitude-frequency bifurcation diagrams are obtained utilizing a perturbation-Incremental Harmonic Balance Method(IHBM). Results show that interfacial damage and viscoelastic constraints from boundary and foundation have an important influence on the linear and nonlinear dynamic behavior of the system.展开更多
Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Se...Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure.展开更多
The phase-field method is used to study the free dendritic crystal growth under forced convection with hypergravity,the hypergravity term is introduced into the liquid-phase momentum equation to examine the dendritic ...The phase-field method is used to study the free dendritic crystal growth under forced convection with hypergravity,the hypergravity term is introduced into the liquid-phase momentum equation to examine the dendritic growth.The paper focuses on the morphology of dendrite growth as well as the tip radius of the upstream dendritic arm and the average growth velocity of dendrite tips under different hypergravity levels.The results show that the morphology of dendrite changes significantly under represent simulation conditions when the hypergravity reaches 35_(g0),the upstream dendritic arm will bifurcate and the horizontal dendrite arms gradually tilt upwards.This change is mainly caused by the hypergravity and flow changing the temperature field near the dendrite interface.In addition,before the morphology of the dendrite is significantly altered,the radius of the tip of the dendrite upstream arm becomes larger with the increase in hypergravity,and the average growth velocity will increase linearly with it.The morphology of dendritic growth under different hypergravity and the changes in the tip radius along with the average growth velocity of the upstream dendritic tip with hypergravity are given in this paper.Finally,the reasons for these phenomena are analyzed.展开更多
The unsteady magnetohydrodynamical(MHD)free convection flow of an incompressible,electrically conducting hybrid nanofluid within a vertical cylindrical geometry is investigated,incorporating the effects of thermal rad...The unsteady magnetohydrodynamical(MHD)free convection flow of an incompressible,electrically conducting hybrid nanofluid within a vertical cylindrical geometry is investigated,incorporating the effects of thermal radiation,viscous dissipation,and internal heat generation.The system is subjected to a time-periodic boundary temperature condition.The Laplace and finite Hankel transforms are used to derive the exact solutions for the velocity and temperature distributions.The effects of various key physical parameters,including the Richardson number,the Eckert number,the radiation parameter,the heat source parameter,and the nanoparticle volume fraction,are considered.The numerical results reveal that increasing the volume fraction significantly enhances the thermal conductivity and temperature,while the magnetic field intensity and viscous dissipation strongly influence the fluid motion and heat transport.Additionally,the pulsating boundary conditions produce distinct oscillatory behaviors in both the velocity and temperature fields.These findings provide important insights into optimizing the heat transfer performance in cylindrical systems such as electronic cooling modules and energy storage devices operating under dynamic thermal conditions.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues o...This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources.The proposed active hybrid solar dryer features a drying cabinet,two Direct Current(DC)fans for forced convection,and a resistive heating element powered by a 180 W solar PV panel.An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance,poor weather conditions,or nighttime.Tomatoes,a delicate and in-demand crop,were selected for experimentation due to their high perishability.Three experiments were conducted on the same prototype:natural convection direct solar dryer(NCDSD),forced convection direct solar dryer(FCDSD),and forced convection hybrid solar dryer(FCHSD).Each experiment began with 0.2 kg of tomatoes at 94%moisture content,achieving significant reductions:28.57%with NCDSD,16.667%with FCDSD,and 16.667%with FCHSD.The observed drying rates varied:1.161 kg/h for NCDSD,2.062 kg/h for FCDSD,and 2.8642 kg/h for FCHSD.This study presents a comparative analysis of efficiency,drying rate,and cost-effectiveness,alongside the system’s economic and environmental feasibility.展开更多
The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal ...The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal counterparts,one gains insights into the system's response under new mathematical frameworks.This paper presents a novel method for converting standard continuous differential equations into their fractal equivalents.This conversion occurs after the nonlinear system is transformed into its linear equivalent.Numerical analyses show that there are several resonance sites in the fractal system,which differ from the one resonance point found in the continuous system.One important finding is that the fractal system loses some of its stabilizing power when decaying behavior is transformed into a diffuse pattern.Interestingly,a decrease in the fractal order in resonance settings shows a stabilizing impact,highlighting the dynamics'complexity inside fractal systems.This endeavor to convert to fractals is a revolutionary technique that is being employed for the first time.展开更多
Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,an...Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,and healthcare domains.This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity.It elucidates the fundamental principles underpinning interaction forces and tactile exchanges,with a specific emphasis on the crucial role of tactile devices.In this review,a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted,utilizing published journal article data as the primary source of information.The review accentuates classical control frameworks and algorithms,while also delving into existing research advancements and prospec-tive breakthrough directions.Moreover,it explores specific practical scenarios ranging from intricate surgeries to hazardous environment exploration,underscoring the technology’s potential to revolutionize industries by augmenting human manipulation of remote systems.This underscores the pivotal role of force feedback bilateral teleoperation as a transformative human-machine interface,capable of shaping flexible control strategies and addressing technological bottlenecks.Future research endeavors in force feedback bilateral teleoperation are expected to prioritize the creation of more immersive experiences,overcoming technical hurdles,fortifying human-machine collaboration,and broadening application domains,particularly within the realms of medical intervention and hazardous environments.With the continuous progression of technology,the integration of human intelligence and robotic capabilities is expected to produce more innovations and breakthroughs in the field of automatic control.展开更多
This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tigh...This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tightness levels during running.Mechanical tests were conducted using 16 weights,and various statistical analyses,including linear regression,Bland-Altman plots,coefficient of variation,and intraclass correlation coefficient,were performed to assess the system’s validity.Fifteen male amateur runners participated in the study,and three conditions(loose,comfortable,and tight)were measured during an upright stance.The system utilized VICON motion systems,a Kistler force plate,and a Photoelectric gate speed measurement system.Results showed a linear relationship between voltage and load at the three sensors(R2≥0.9997).Bland-Altman plots demonstrated 95%prediction intervals within±1.96SD from zero for all sensors.The average coefficient of variation for each sensor was less than 0.38%.Intraclass correlation coefficient values were larger than 0.999(p<0.0001)for each sensor.The peak tension of the front shoelace was greater than that of the front and middle when the shoelace was loose and tight.The rear shoelace had the highest tension force.The study also found that shoelace tension varied throughout the gait cycle during running.Overall,this research provides a novel and validated method for measuring shoelace tensile stress,which has implications for developing automatic shoelace fastening systems.展开更多
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p...Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.展开更多
Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration...Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration characteristics of rotor systems,a flexible rotor system model considering the unbalanced mass is proposed.The time-varying bearing force is considered.The developed model is verified by the experimental and theoretical frequency spectrums.The displacements and axis orbits of flexible and rigid rotor systems are compared.The results show that the unbalanced mass will affect the vibration characteristics of rotor system.This model can be more suitable and effective to calculate vibration characteristics of rotor system with the flexible deformation and unbalanced mass.This paper provides a new reference and research method for predicting the vibrations of flexible rotor system considering the unbalanced mass.展开更多
The frequent or occasional impact loads pose serious threats to the service safety of conventional concrete structures in tunnel.In this paper,a novel three-dimensional mesoscopic model of steel fiber reinforced concr...The frequent or occasional impact loads pose serious threats to the service safety of conventional concrete structures in tunnel.In this paper,a novel three-dimensional mesoscopic model of steel fiber reinforced concrete(SFRC)is constructed by discrete element method.The model encompasses the concrete matrix,aggregate,interfacial transition zone and steel fibers,taking into account the random shape of the coarse aggregate and the stochastic distribution of steel fibers.It captures microscopic-level interactions among the coarse aggregate,steel fibers,and matrix.Subsequently,a comprehensive procedure is formulated to calibrate the microscopic parameters required by the model,and the reliability of the model is verified by comparing with the experimental results.Furthermore,a coupled finite difference method-discrete element method approach is used to construct the model of the split Hopkinson pressure bar.Compression tests are simulated on SFRC specimens with varying steel fiber contents under static and dynamic loading conditions.Finally,based on the advantages of DEM analysis at the mesoscopic level,this study analyzed mechanisms of enhancement and crack arrest in SFRC.It shed a light on the perspectives of interface failure process,microcrack propagation,contact force field evolution and energy analysis,offering valuable insights for related mining engineering applications.展开更多
During the grinding train operation process,the grinding force between the grinding wheel and the rail is critical in ensuring the grinding quality and efficiency.The coupling vibration among the frame,the grinding wh...During the grinding train operation process,the grinding force between the grinding wheel and the rail is critical in ensuring the grinding quality and efficiency.The coupling vibration among the frame,the grinding wheels,and the wheelsets will seriously affect the stability of the grinding force.In this paper,the coupled mechanical model of the grinding wheel/rail is established based on the contact mechanics theory,which is embedded as a submodel into the dynamic model of the multi-rigid buggy.The interaction among the frame,the grinding wheels and the wheelsets is analysed by setting the convex irregularity on the rail.The grinding effect is evaluated in combination with the subway’s long wave corrugation grinding conditions.The results show that when the grinding buggy passes the convex irregularity,the vibration excited by the wheelset system has a significant impact on the dynamic behavior of the grinding wheels.The vibration of the grinding wheel is mainly transmitted between the grinding wheel and the frame,less affecting the wheelset.For the long wave corrugation of the subway,the grinding effect of the grinding wheel has a certain correlation with the phase angle of the wheelset through the corrugation.The research results provide an important reference for the setting of the grinding pattern.展开更多
The paper develops and employs analytical-numerical solution method for the study of the time-harmonic dynamic stress field in the system consisting of the hollow cylinder and surrounding elastic medium under the non-...The paper develops and employs analytical-numerical solution method for the study of the time-harmonic dynamic stress field in the system consisting of the hollow cylinder and surrounding elastic medium under the non-axisymmetric forced vibration of this system.It is assumed that in the interior of the hollow cylinder the point-located with respect to the cylinder axis,non-axisymmetric with respect to the circumferential direction and uniformly distributed time-harmonic forces act.Corresponding boundary value problem is solved by employing of the exponential Fourier transformation with respect to the axial coordinate and by employing of the Fourier series expansion of these transformations.Numerical results on the frequency response of the interface normal stresses are presented and discussed.展开更多
In this paper,the main researches are focused on the horizontal nonlinear vibration characteristics of roll systems for rolling mill,mainly including the study of forced vibration and free vibration of the roller.Firs...In this paper,the main researches are focused on the horizontal nonlinear vibration characteristics of roll systems for rolling mill,mainly including the study of forced vibration and free vibration of the roller.Firstly,the nonlinear damping parameters and nonlinear stiffness parameters within interface of the rolling mill are both considered,and a fractional-order differential term is also introduced to model the horizontal nonlinear vibration.Secondly,the averaging method is introduced to solve the forced vibration system of the mill roll system,and the amplitude-frequency characteristic curves of the system are obtained for different orders,external excitation amplitudes,stiffness and fractional order coefficients.Thirdly,the amplitude-frequency and phasefrequency characteristics of the free vibration of the mill roll system are investigated at different fractional orders.Then,the accuracy of the averaging method for solving the dynamic characteristics of the system is verified by numerical analysis,and the effect of the fractional differential term coefficients and order on the dynamic characteristics of the roll system are investigated.Finally,the time-frequency characteristics and phase-frequency characteristics of free vibration systems at different fractional orders are studied.The validity of the theoretical study is also verified through experiments.展开更多
In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar princ...In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar principles.Through the similar experiment and numerical simulation,the distribution of airflow field in the roadway and the spatial and temporal evolution of dust pollution under the conditions of forced ventilation were determined.The airflow field in the roadway can be divided into three zones:jet zone,vortex zone and reflux zone.The dust concentration gradually decreases from the head to the rear of the roadway.Under the forced ventilation conditions,there is a unilateral accumulation of dust,with higher dust concentrations away from the ducts.The position of the equipment has an interception effect on the dust.The maximum error between the test value and the simulation result is 12.9%,which verifies the accuracy of the experimental results.The research results can provide theoretical guidance for the application of dust removal technology in coal mine.展开更多
In this paper, forced response of fluid-spacecraft coupling system and force and moment of acting on rect-angular container are studied. Firsily, the interrelation between the generaized coordinates of fluid velocity ...In this paper, forced response of fluid-spacecraft coupling system and force and moment of acting on rect-angular container are studied. Firsily, the interrelation between the generaized coordinates of fluid velocity potential function and surface wave-height function is derived for liearized eqqations describing motion of contained fluid.The drnamical equations of coupling system is obtained by Lagrangian formulation. These equations provides some in-sights of fluid-spacecraft coupling characteristics.It is not in the sense of the whole modal mass that the fluid sloshing of corresponding order is excited by the vibration of the spacecratt.Then, the force and moment of the fiuid on the container are derived and discussed in detal. Latly, numerical simulation and conclusions are given.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42172159 and 42302143)the Postdoctora Fellowship Program of the China Postdoctoral Science Foundation(CPSF)(Grant No.GZB20230864).
文摘Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.
文摘In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves, as long as the shifting speed falls in a finite interval where the endpoints are obtained from KPP-Fisher speeds. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle.
基金supported by the Science Center for Gas Turbine Project,China(No.P2022-C-II-001-001)the National Science and Technology Major Project,Chinathe Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2022045).
文摘Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blades is essential in the routine design. In this work, the Time Collocation Method (TCM) which uses the cubic B-spline to approximate flow variables is first thoroughly studied and then combined with the moving grid technique to analyze aeroelastic flow fields. To showcase its advantage over the Harmonic Balance (HB) method which uses a truncated Fourier series to approximately represent flow variables, a matrix analysis of the one-dimensional advection equation is first performed. The results of stability analysis are verified by two test cases: the Durham linear oscillating turbine cascade and a two-blade-row transonic compressor. The vibration of the blade of the first case is driven by a motor while the excitation force of the second case comes from blade row interaction. The results show that the time collocation method has a faster convergence rate and is more stable than the harmonic balance method, especially for cases with a large maximum grid reduced frequency. More importantly, the time collocation method is capable of accurately predicting aeroelastic performance of turbomachinery blades.
文摘Revealing the combined influence of interfacial damage and nonlinear factors on the forced vibration is significant for the stability design of fluid-conveying pipes, which are usually assembled in aircraft. The nonlinear forced resonance of fluid-conveying layered pipes with a weak interface and a movable boundary under the external excitation is studied. The pipe is simply supported at both ends, with one end subject to a viscoelastic boundary constraint described by KelvinVoigt model. The weak interface in the pipe is considered in the refined displacement field of the layered pipe employing the interfacial cohesive law. The governing equations are derived by Hamilton's variational principle. Geometric nonlinearities including nonlinear curvature, longitudinal inertia nonlinearity and nonlinear constraint force are comprehensively considered during the theoretical derivation. Amplitude-frequency bifurcation diagrams are obtained utilizing a perturbation-Incremental Harmonic Balance Method(IHBM). Results show that interfacial damage and viscoelastic constraints from boundary and foundation have an important influence on the linear and nonlinear dynamic behavior of the system.
基金The authors are grateful to Weifang Science and Technology Development Plan Project(2023ZJ1166)for supporting this work.
文摘Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure.
基金supported by the National Natural Science Foundation of China(Grant No.52588202)。
文摘The phase-field method is used to study the free dendritic crystal growth under forced convection with hypergravity,the hypergravity term is introduced into the liquid-phase momentum equation to examine the dendritic growth.The paper focuses on the morphology of dendrite growth as well as the tip radius of the upstream dendritic arm and the average growth velocity of dendrite tips under different hypergravity levels.The results show that the morphology of dendrite changes significantly under represent simulation conditions when the hypergravity reaches 35_(g0),the upstream dendritic arm will bifurcate and the horizontal dendrite arms gradually tilt upwards.This change is mainly caused by the hypergravity and flow changing the temperature field near the dendrite interface.In addition,before the morphology of the dendrite is significantly altered,the radius of the tip of the dendrite upstream arm becomes larger with the increase in hypergravity,and the average growth velocity will increase linearly with it.The morphology of dendritic growth under different hypergravity and the changes in the tip radius along with the average growth velocity of the upstream dendritic tip with hypergravity are given in this paper.Finally,the reasons for these phenomena are analyzed.
基金Project supported by the National Natural Science Foundation of China(No.12250410244)the Jiangsu Funding Program for Excellent Postdoctoral Talent of China(No.2023ZB884)+2 种基金the Foreign Expert Project funding of China(No.WGXZ2023017L)the Shuang-Chuang(SC)Doctor Program of Jiangsu Provincethe Longshan Scholar Program of Nanjing University of Information Science&Technology。
文摘The unsteady magnetohydrodynamical(MHD)free convection flow of an incompressible,electrically conducting hybrid nanofluid within a vertical cylindrical geometry is investigated,incorporating the effects of thermal radiation,viscous dissipation,and internal heat generation.The system is subjected to a time-periodic boundary temperature condition.The Laplace and finite Hankel transforms are used to derive the exact solutions for the velocity and temperature distributions.The effects of various key physical parameters,including the Richardson number,the Eckert number,the radiation parameter,the heat source parameter,and the nanoparticle volume fraction,are considered.The numerical results reveal that increasing the volume fraction significantly enhances the thermal conductivity and temperature,while the magnetic field intensity and viscous dissipation strongly influence the fluid motion and heat transport.Additionally,the pulsating boundary conditions produce distinct oscillatory behaviors in both the velocity and temperature fields.These findings provide important insights into optimizing the heat transfer performance in cylindrical systems such as electronic cooling modules and energy storage devices operating under dynamic thermal conditions.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
基金supported by the Ignite National Technology fund,under National Grassroots Initiatives Program of ICT R&D(NIGRI),Project ID.NGIRI-2024-23901 of 2024.
文摘This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources.The proposed active hybrid solar dryer features a drying cabinet,two Direct Current(DC)fans for forced convection,and a resistive heating element powered by a 180 W solar PV panel.An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance,poor weather conditions,or nighttime.Tomatoes,a delicate and in-demand crop,were selected for experimentation due to their high perishability.Three experiments were conducted on the same prototype:natural convection direct solar dryer(NCDSD),forced convection direct solar dryer(FCDSD),and forced convection hybrid solar dryer(FCHSD).Each experiment began with 0.2 kg of tomatoes at 94%moisture content,achieving significant reductions:28.57%with NCDSD,16.667%with FCDSD,and 16.667%with FCHSD.The observed drying rates varied:1.161 kg/h for NCDSD,2.062 kg/h for FCDSD,and 2.8642 kg/h for FCHSD.This study presents a comparative analysis of efficiency,drying rate,and cost-effectiveness,alongside the system’s economic and environmental feasibility.
文摘The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal counterparts,one gains insights into the system's response under new mathematical frameworks.This paper presents a novel method for converting standard continuous differential equations into their fractal equivalents.This conversion occurs after the nonlinear system is transformed into its linear equivalent.Numerical analyses show that there are several resonance sites in the fractal system,which differ from the one resonance point found in the continuous system.One important finding is that the fractal system loses some of its stabilizing power when decaying behavior is transformed into a diffuse pattern.Interestingly,a decrease in the fractal order in resonance settings shows a stabilizing impact,highlighting the dynamics'complexity inside fractal systems.This endeavor to convert to fractals is a revolutionary technique that is being employed for the first time.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the Convergence Security Core Talent Training Business Support Program(IITP-2024-RS-2024-00423071)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,and healthcare domains.This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity.It elucidates the fundamental principles underpinning interaction forces and tactile exchanges,with a specific emphasis on the crucial role of tactile devices.In this review,a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted,utilizing published journal article data as the primary source of information.The review accentuates classical control frameworks and algorithms,while also delving into existing research advancements and prospec-tive breakthrough directions.Moreover,it explores specific practical scenarios ranging from intricate surgeries to hazardous environment exploration,underscoring the technology’s potential to revolutionize industries by augmenting human manipulation of remote systems.This underscores the pivotal role of force feedback bilateral teleoperation as a transformative human-machine interface,capable of shaping flexible control strategies and addressing technological bottlenecks.Future research endeavors in force feedback bilateral teleoperation are expected to prioritize the creation of more immersive experiences,overcoming technical hurdles,fortifying human-machine collaboration,and broadening application domains,particularly within the realms of medical intervention and hazardous environments.With the continuous progression of technology,the integration of human intelligence and robotic capabilities is expected to produce more innovations and breakthroughs in the field of automatic control.
文摘This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tightness levels during running.Mechanical tests were conducted using 16 weights,and various statistical analyses,including linear regression,Bland-Altman plots,coefficient of variation,and intraclass correlation coefficient,were performed to assess the system’s validity.Fifteen male amateur runners participated in the study,and three conditions(loose,comfortable,and tight)were measured during an upright stance.The system utilized VICON motion systems,a Kistler force plate,and a Photoelectric gate speed measurement system.Results showed a linear relationship between voltage and load at the three sensors(R2≥0.9997).Bland-Altman plots demonstrated 95%prediction intervals within±1.96SD from zero for all sensors.The average coefficient of variation for each sensor was less than 0.38%.Intraclass correlation coefficient values were larger than 0.999(p<0.0001)for each sensor.The peak tension of the front shoelace was greater than that of the front and middle when the shoelace was loose and tight.The rear shoelace had the highest tension force.The study also found that shoelace tension varied throughout the gait cycle during running.Overall,this research provides a novel and validated method for measuring shoelace tensile stress,which has implications for developing automatic shoelace fastening systems.
基金supported by the Opening Foundation of China National Logging Corporation(CNLC20229C06)the China Petroleum Technical Service Corporation's science project'Development and application of 475 rotary steering system'(2024T-001001)。
文摘Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.
基金Support by Shanxi Provincial Key Research and Development Plan of China(Grant No.2024GH-ZDXM-29)National Natural Science Foundation of China(Grant No.52175120)Shaanxi Provincial Innovation Capability Support Program of China(Grant No.2024RS-CXTD-15)。
文摘Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration characteristics of rotor systems,a flexible rotor system model considering the unbalanced mass is proposed.The time-varying bearing force is considered.The developed model is verified by the experimental and theoretical frequency spectrums.The displacements and axis orbits of flexible and rigid rotor systems are compared.The results show that the unbalanced mass will affect the vibration characteristics of rotor system.This model can be more suitable and effective to calculate vibration characteristics of rotor system with the flexible deformation and unbalanced mass.This paper provides a new reference and research method for predicting the vibrations of flexible rotor system considering the unbalanced mass.
基金financial support by the National Natural Science Foundation of China(52174101&52408310)Guangdong Basic and Applied Basic Research Foundation(2023A1515011634&2024A1515012528)Guangdong Provincial Department of Science and Technology(2021ZT09G087)for the research.
文摘The frequent or occasional impact loads pose serious threats to the service safety of conventional concrete structures in tunnel.In this paper,a novel three-dimensional mesoscopic model of steel fiber reinforced concrete(SFRC)is constructed by discrete element method.The model encompasses the concrete matrix,aggregate,interfacial transition zone and steel fibers,taking into account the random shape of the coarse aggregate and the stochastic distribution of steel fibers.It captures microscopic-level interactions among the coarse aggregate,steel fibers,and matrix.Subsequently,a comprehensive procedure is formulated to calibrate the microscopic parameters required by the model,and the reliability of the model is verified by comparing with the experimental results.Furthermore,a coupled finite difference method-discrete element method approach is used to construct the model of the split Hopkinson pressure bar.Compression tests are simulated on SFRC specimens with varying steel fiber contents under static and dynamic loading conditions.Finally,based on the advantages of DEM analysis at the mesoscopic level,this study analyzed mechanisms of enhancement and crack arrest in SFRC.It shed a light on the perspectives of interface failure process,microcrack propagation,contact force field evolution and energy analysis,offering valuable insights for related mining engineering applications.
基金Supported by National Natural Science Foundation of China(Grant No.52475137)Sichuan Provincial Science and Technology Program(Grant No.2024YFHZ0280)Sichuan Provincial Nature and Science Foundation Innovation Research Group Project(Grant No.2023NSFSC1975).
文摘During the grinding train operation process,the grinding force between the grinding wheel and the rail is critical in ensuring the grinding quality and efficiency.The coupling vibration among the frame,the grinding wheels,and the wheelsets will seriously affect the stability of the grinding force.In this paper,the coupled mechanical model of the grinding wheel/rail is established based on the contact mechanics theory,which is embedded as a submodel into the dynamic model of the multi-rigid buggy.The interaction among the frame,the grinding wheels and the wheelsets is analysed by setting the convex irregularity on the rail.The grinding effect is evaluated in combination with the subway’s long wave corrugation grinding conditions.The results show that when the grinding buggy passes the convex irregularity,the vibration excited by the wheelset system has a significant impact on the dynamic behavior of the grinding wheels.The vibration of the grinding wheel is mainly transmitted between the grinding wheel and the frame,less affecting the wheelset.For the long wave corrugation of the subway,the grinding effect of the grinding wheel has a certain correlation with the phase angle of the wheelset through the corrugation.The research results provide an important reference for the setting of the grinding pattern.
文摘The paper develops and employs analytical-numerical solution method for the study of the time-harmonic dynamic stress field in the system consisting of the hollow cylinder and surrounding elastic medium under the non-axisymmetric forced vibration of this system.It is assumed that in the interior of the hollow cylinder the point-located with respect to the cylinder axis,non-axisymmetric with respect to the circumferential direction and uniformly distributed time-harmonic forces act.Corresponding boundary value problem is solved by employing of the exponential Fourier transformation with respect to the axial coordinate and by employing of the Fourier series expansion of these transformations.Numerical results on the frequency response of the interface normal stresses are presented and discussed.
基金supported by the National Key Research and Development Program of China (No.2018YFA0707300)the National Natural Science Foundation of China (Nos.51905372, 51804215)+1 种基金the State Key Laboratory of Metal Extrusion and Forging Equipment Technology Open-end FundsChengdu Technological University Laboratory Open Fund.
文摘In this paper,the main researches are focused on the horizontal nonlinear vibration characteristics of roll systems for rolling mill,mainly including the study of forced vibration and free vibration of the roller.Firstly,the nonlinear damping parameters and nonlinear stiffness parameters within interface of the rolling mill are both considered,and a fractional-order differential term is also introduced to model the horizontal nonlinear vibration.Secondly,the averaging method is introduced to solve the forced vibration system of the mill roll system,and the amplitude-frequency characteristic curves of the system are obtained for different orders,external excitation amplitudes,stiffness and fractional order coefficients.Thirdly,the amplitude-frequency and phasefrequency characteristics of the free vibration of the mill roll system are investigated at different fractional orders.Then,the accuracy of the averaging method for solving the dynamic characteristics of the system is verified by numerical analysis,and the effect of the fractional differential term coefficients and order on the dynamic characteristics of the roll system are investigated.Finally,the time-frequency characteristics and phase-frequency characteristics of free vibration systems at different fractional orders are studied.The validity of the theoretical study is also verified through experiments.
基金National Key R&D Program of China(2022YFC2503200,2022YFC2503201)National Natural Science Foundation of China(52074012,52204191)+5 种基金Anhui Provincial Natural Science Foundation(2308085J19)University Distinguished Youth Foundation of Anhui Province(2022AH020057)Anhui Province University Discipline(Major)Top Talent Academic Support Project(gxbjZD2022017)Funding for academic research activities of reserve candidates for academic and technological leaders in Anhui Province(2022H301)Independent Research fund of Key Laboratory of Industrial Dust Prevention and Control&Occupational Health and Safety,Ministry of Education(Anhui University of Science and Technology)(EK20211004)Graduate Innovation Fund of Anhui University of Science and Technology(2023CX1003).
文摘In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar principles.Through the similar experiment and numerical simulation,the distribution of airflow field in the roadway and the spatial and temporal evolution of dust pollution under the conditions of forced ventilation were determined.The airflow field in the roadway can be divided into three zones:jet zone,vortex zone and reflux zone.The dust concentration gradually decreases from the head to the rear of the roadway.Under the forced ventilation conditions,there is a unilateral accumulation of dust,with higher dust concentrations away from the ducts.The position of the equipment has an interception effect on the dust.The maximum error between the test value and the simulation result is 12.9%,which verifies the accuracy of the experimental results.The research results can provide theoretical guidance for the application of dust removal technology in coal mine.
文摘In this paper, forced response of fluid-spacecraft coupling system and force and moment of acting on rect-angular container are studied. Firsily, the interrelation between the generaized coordinates of fluid velocity potential function and surface wave-height function is derived for liearized eqqations describing motion of contained fluid.The drnamical equations of coupling system is obtained by Lagrangian formulation. These equations provides some in-sights of fluid-spacecraft coupling characteristics.It is not in the sense of the whole modal mass that the fluid sloshing of corresponding order is excited by the vibration of the spacecratt.Then, the force and moment of the fiuid on the container are derived and discussed in detal. Latly, numerical simulation and conclusions are given.