Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-typ...Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-type equilibrium equations are derived which are equivalent to the vector-type necessary and sufficient conditions far equilibrium.展开更多
This letter is focused on proposing an arbitrarily high-order energy-preserving method for solving the charged-particle dynamics.After transforming the original Hamiltonian energy functional into a quadratic form by u...This letter is focused on proposing an arbitrarily high-order energy-preserving method for solving the charged-particle dynamics.After transforming the original Hamiltonian energy functional into a quadratic form by using the invariant energy quadratization method,symplectic Runge-Kutta method is used to construct a novel energy-preserving scheme to solve the Lorentz force system.The new scheme is not only energy-preserving,but also can be arbitrarily highorder.Numerical experiments are conducted to demonstrate the notable superiority of the new method with comparison to the well-known Boris method and another second-order energypreserving method in the literature.展开更多
Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration...Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration characteristics of rotor systems,a flexible rotor system model considering the unbalanced mass is proposed.The time-varying bearing force is considered.The developed model is verified by the experimental and theoretical frequency spectrums.The displacements and axis orbits of flexible and rigid rotor systems are compared.The results show that the unbalanced mass will affect the vibration characteristics of rotor system.This model can be more suitable and effective to calculate vibration characteristics of rotor system with the flexible deformation and unbalanced mass.This paper provides a new reference and research method for predicting the vibrations of flexible rotor system considering the unbalanced mass.展开更多
Soft robots,as a modern gateway to unlocking the mysteries of underwater realms,present new complexities.Modeling their behavior when in contact with external forces,whether point-based or distributed,is a primary cha...Soft robots,as a modern gateway to unlocking the mysteries of underwater realms,present new complexities.Modeling their behavior when in contact with external forces,whether point-based or distributed,is a primary challenge due to the nature of soft bodies.To obtain a holistic view of the system’s behavior determining the governing dynamics is deemed necessary.This paper proposes a new technique to simulate the dynamic lateral undulation of a soft robotic fish with a cable-driven soft tail.By integrating the rigid finite element method with rigid-body robotics,the model represents the undulation of a finite number of rigid elements connected through a set of torsional spring and damper.Instead of directly modeling external forces,we substitute equivalent joint torques into the system dynamics,allowing us to consider external effects without complicating the model.The resulting model yields valuable insights into the system’s behavior,including propulsive and lateral forces.A comparison with experimental results shows strong agreement,with a tip amplitude error of 10% at 0.8 Hz,5.25% at 1.6 Hz and 2.54%at 2.2 Hz flapping frequency.These findings illuminate the influence of lateral undulation on the overall dynamics,paving the way for fully autonomous robotic fish.展开更多
Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,an...Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,and healthcare domains.This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity.It elucidates the fundamental principles underpinning interaction forces and tactile exchanges,with a specific emphasis on the crucial role of tactile devices.In this review,a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted,utilizing published journal article data as the primary source of information.The review accentuates classical control frameworks and algorithms,while also delving into existing research advancements and prospec-tive breakthrough directions.Moreover,it explores specific practical scenarios ranging from intricate surgeries to hazardous environment exploration,underscoring the technology’s potential to revolutionize industries by augmenting human manipulation of remote systems.This underscores the pivotal role of force feedback bilateral teleoperation as a transformative human-machine interface,capable of shaping flexible control strategies and addressing technological bottlenecks.Future research endeavors in force feedback bilateral teleoperation are expected to prioritize the creation of more immersive experiences,overcoming technical hurdles,fortifying human-machine collaboration,and broadening application domains,particularly within the realms of medical intervention and hazardous environments.With the continuous progression of technology,the integration of human intelligence and robotic capabilities is expected to produce more innovations and breakthroughs in the field of automatic control.展开更多
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p...Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.展开更多
In the field of flexible polishing,the accuracy of contact force control directly affects processing quality and material removal uniformity.However,the complex dynamic contact model and inherent strong hysteresis of ...In the field of flexible polishing,the accuracy of contact force control directly affects processing quality and material removal uniformity.However,the complex dynamic contact model and inherent strong hysteresis of pneumatic systems can significantly impact the force control accuracy of pneumatic polishing system end-effectors.To enhance responsiveness and control precision during the flexible polishing process,this study proposes an observer-based fuzzy adaptive control(OBFAC)scheme.To ensure control accuracy under an uncertain dynamic contact model,a fuzzy state observer is designed to estimate unmeasured states,while fuzzy logic approximates the uncertain nonlinear functions in the model to improve control performance.Additionally,the integral barrier Lyapunov function is employed to ensure that all states remain within predefined constraints.The stability of the proposed control scheme is analyzed using the Lyapunov function,and a pneumatic polishing experimental platform is constructed to conduct polishing contact force control experiments under multiple scenarios.Experimental results demonstrate that the proposed OBFAC scheme achieves superior tracking control performance compared to existing control schemes.展开更多
During the grinding train operation process,the grinding force between the grinding wheel and the rail is critical in ensuring the grinding quality and efficiency.The coupling vibration among the frame,the grinding wh...During the grinding train operation process,the grinding force between the grinding wheel and the rail is critical in ensuring the grinding quality and efficiency.The coupling vibration among the frame,the grinding wheels,and the wheelsets will seriously affect the stability of the grinding force.In this paper,the coupled mechanical model of the grinding wheel/rail is established based on the contact mechanics theory,which is embedded as a submodel into the dynamic model of the multi-rigid buggy.The interaction among the frame,the grinding wheels and the wheelsets is analysed by setting the convex irregularity on the rail.The grinding effect is evaluated in combination with the subway’s long wave corrugation grinding conditions.The results show that when the grinding buggy passes the convex irregularity,the vibration excited by the wheelset system has a significant impact on the dynamic behavior of the grinding wheels.The vibration of the grinding wheel is mainly transmitted between the grinding wheel and the frame,less affecting the wheelset.For the long wave corrugation of the subway,the grinding effect of the grinding wheel has a certain correlation with the phase angle of the wheelset through the corrugation.The research results provide an important reference for the setting of the grinding pattern.展开更多
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell...Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.展开更多
A prototype of the master slave telerehabilitation robotic system with force feedback is developed. This system contains a pair of robots with the master being operated by the therapist and the slave following the mas...A prototype of the master slave telerehabilitation robotic system with force feedback is developed. This system contains a pair of robots with the master being operated by the therapist and the slave following the master to guide the patients to exercise. A slave device with a slave controller is designed to stretch and mobilize the impaired elbow joints accurately and safely. A master device with a master controller is designed to control/monitor the procedure of treatment and assess the outcome of treatment remotely and accurately. By using the twoport network theory and the circuit equivalent impedance models, the position-force control scheme is designed to generate force feedback for the therapist who is to be informed of the interaction force between the subject and the robot arm during exercise. Experiments were conducted with a healthy male. Results show that the therapist can guide the patient to exercise by the master arm and can feel the interaction forces between the impaired arm and the robot. Compared with the traditional therapy, this system is more cost-efficient, more convenient and safer for both the stroke patients and the clinicians.展开更多
Identifying the driving forces that cause changes in forest ecosystem services related to water conservation is essential for the design of interventions that could enhance positive impacts as well as minimizing negat...Identifying the driving forces that cause changes in forest ecosystem services related to water conservation is essential for the design of interventions that could enhance positive impacts as well as minimizing negative impacts. In this study, we propose an assessment concept framework model for indirect-direct-ecosystem service (IN-DI-ESS) driving forces within this context and method for index construction that considers the selection of a robust and parsimonious variable set. Factor analysis was integrated into two-stage data envelopment analysis (TS-DEA) to determine the driving forces and their effects on water conservation services in forest ecosystems at the provincial scale in China. The results showed the following. 1) Ten indicators with factor scores more than 0.8 were selected as the minimum data set. Four indicators comprising population density, per capita gross domestic product, irrigation efficiency, and per capita food consumption were the indirect driving factors, and six indicators comprising precipitation, farmland into forestry or pasture, forest cover, habitat area, water footprint, and wood extraction were the direct driving forces. 2) Spearman's rank correlation test was performed to compare the overall effectiveness in two periods: stage 1 and stage 2. The calculated coefficients were 0.245, 0.136, and 0.579, respectively, whereas the tabulated value was 0.562. This indicates that the driving forces obviously differed in terms of their contribution to the overall effectiveness and they caused changes in water conservation services in different stages. In terms of the variations in different driving force effects in the years 2000 and 2010, the overall, stage 1, and stage 2 variances were 0.020, 0.065, and 0.079 in 2000, respectively, and 0.018, 0.063, and 0.071 in 2010. This also indicates that heterogeneous driving force effects were obvious in the process during the same period. Identifying the driving forces that affect service changes and evaluating their efficiency have significant policy implications for the management of forest ecosystem services. Advanced effectiveness measures for weak regions could be improved in an appropriate manner. In this study, we showed that factor analysis coupled with TS-DEA based on the IN-D1-ESS framework can increase the parsimony of driving force indicators, as well as interpreting the interactions among indirect and direct driving forces with forest ecosystem water conservation services, and reducing the uncertainty related to the internal consistency during data selection.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force con...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force control inevitably.In the recent years,although many scholars researched some control methods such as disturbance rejection control,parameter self-adaptive control,impedance control and so on,to improve the force control performance of HDU,the robustness of the force control still needs improving.Therefore,how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper.The force control system mathematic model of HDU is established by the mechanism modeling method,and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived,considering the dynamic characteristics of the load stiffness and the load damping under different environment structures.Then,simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform,which provides the foundation for the force control compensation experiment research.In addition,the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping,under which the force control compensation method is introduced,and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment.The research results indicate that if the load characteristics are known,the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation,i.e.,this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters,thereby,the online PID parameters tuning control method which is complex needs not be adopted.All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process o...The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process of collision that often occurs in gear system. Focus on the contact-impact events, this paper proposes an improved gear contact force model for dynamic analysis in helical gear transmission system. In this model, a new factor associated with hysteresis damping is developed for contact-impact state, whereas the traditional linear damping factor is utilized for normal meshing state. For determining the selection strategy of these two damping factors, the fundamental contact mechanics of contact-impact event a ected by supporting forces are analyzed. During this analysis, an e ect factor is proposed for evaluating the influence of supporting forces on collision. Meanwhile, a new restitution of coe cient is deduced for calculating hysteresis damping factor, which suitable for both separation and non-separation states at the end of collision. In addition, the time-varying meshing sti ness(TVMS) is obtained based on the potential energy approach and the slice theory. Finally, a dynamic analysis of a helical gear system is carried out to better understand the contact force model proposed in this paper. The analysis results show that the contribution of supporting forces to the dynamic response of contact-impact event within gear pair is important. The supporting forces and dissipative energy are the main reasons for gear system to enter a steady contact state from repeated contact-impact state. This research proposes an improved contact force model which distinguishes meshing and collision states in gear system.展开更多
Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system s...Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.展开更多
The calculation of force for a roll system has significant effects on cold roiled thin strip gauge adjustment of a 20-high Sendzimir mill. According to the rolling parameters and rolling plans of a ZR 22B-42 Sendzimir...The calculation of force for a roll system has significant effects on cold roiled thin strip gauge adjustment of a 20-high Sendzimir mill. According to the rolling parameters and rolling plans of a ZR 22B-42 Sendzimir mill in a silicon steel factory, the contact force and the resultant force of each roll in the roll system were calculated both in the static state and in the rolling state through C++ programs. It was found that the contact force between the see ond intermediate driven roll and the back up rolls B and C was much lower than that between the other rolls in static state. The results also demonstrated that the resultant force are 59.5%-62%, 37.7%-40.3%, 87.1%-88.7% and 53.9%-56.7% of the rolling force at the second intermediate driven roll, the second intermediate idler roll, the back-up rolls B and C and the back-up rolls A and D, respectively. It was also revealed that the minimum contact force generated between the first intermediate roll and the second intermediate idler roll is 206.7 kN on the first roll ing pass, and that on the second rolling pass, the minimum contact force generated between the second intermediate driven roll and the back-up roll C is 470.7 kN.展开更多
Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the beari...Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs.展开更多
The research on ecosystem service values(ESVs)estimation in arid region is weak.We took the Alxa League of China’s Inner Mongolia Autonomous Region,an extreme arid region,as an example and constructed an equivalent c...The research on ecosystem service values(ESVs)estimation in arid region is weak.We took the Alxa League of China’s Inner Mongolia Autonomous Region,an extreme arid region,as an example and constructed an equivalent coefficient method to assess its ESVs from 1975 to 2015,by determining the standard unit of ESVs and the basic equivalent of the value of different ecosystem services per unit area based on the regional characteristics,literature research,expert knowledge and land use data.The results show that the ESVs first decreased from 83170.4 million yuan(RMB)in 1975 to 82337.8 million yuan(RMB)in 2000 and then increased to84033.6 million yuan(RMB)in 2015,and the ESV of sparse grassland and desert account for about 33%and 29%of the total ESVs,respectively.Among the four service types,the regulating services,support services,supply services and cultural services account for66.5%,22.8%,6.0%and 4.7%,respectively.The changes of ESVs in Alxa League are determined by the socio-economic development and ecological changes.This study provides a new method to estimate the ESVs in arid region by integrating existing methods and regional characteristics,such as the cost of water for arid ecosystems.展开更多
The technique of optical tweezers has been improved a lot since its invention, which extends the application fields of optical tweezers. Besides the conventionally used Gaussian beams, different types of ring beams ha...The technique of optical tweezers has been improved a lot since its invention, which extends the application fields of optical tweezers. Besides the conventionally used Gaussian beams, different types of ring beams have also been used to form optical tweezers for different purposes. The two typical kinds of ring beams used in optical tweezers are the hollow Gaussian beam and Laguerre-Gaussian (LG) beam. Both theoretical computation and experiments have shown that the axial trapping force is improved for the ring beams compared with the Gaussian beam, and hence the trapping stability is improved, although the transverse trapping forces of ring beams are smaller than that of Gaussian beam. However, no systematic study on the trapping forces of ring beam has ever been discussed. In this article, we will investigate the axial and transverse trapping forces of different types of ring beams with different parameters systematically, by numerical computation in which the ray optics model is adopted. The spherical aberration caused by the refractive index mismatch between oil and water is also considered in the article. The trapping forces for different objectives that obey the sine condition and tangent condition are also compared with each other. The result of systematical calculation will be useful for the applications of optical tweezers formed by different types of ring beams.展开更多
A virtual interventional surgical system with force feedback is designed to provide practice before complicated interventional operation and assistance during operation.The collision detection,vessel deformation calcu...A virtual interventional surgical system with force feedback is designed to provide practice before complicated interventional operation and assistance during operation.The collision detection,vessel deformation calculating and virtual force computing of the virtual system are implemented by using skeleton spring model as the physical modeling foundation,which is based on the mass spring model and easy to construct with high computing efficiency.In order to increase the real time performance,the central plane of the vessel model is extracted and then simplified to complete the skeleton filling.The initiative bending kinematics of the virtual catheter is analyzed so as to provide the virtual system with higher fidelity.The experimental results show that the virtual system can well simulate the vessel deformation and force feedback within an interventional surgery,which gives the virtual system better immersion.展开更多
Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation...Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation analysis because they are either of poor accuracy or time consuming. Oil film forces database is proposed is to transform the journal speed variation range in radial and circumferential directions from (-∞,+∞) to (-1, +1). The numerical results show the suggested method is much more effective. And sub harmonic, quasi periodic and chaotic vibrations are predicted for a range of speed and unbalance parameters.展开更多
文摘Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-type equilibrium equations are derived which are equivalent to the vector-type necessary and sufficient conditions far equilibrium.
基金Support by the National Natural Science Foundation of China(Grants Nos.1180127711971242).
文摘This letter is focused on proposing an arbitrarily high-order energy-preserving method for solving the charged-particle dynamics.After transforming the original Hamiltonian energy functional into a quadratic form by using the invariant energy quadratization method,symplectic Runge-Kutta method is used to construct a novel energy-preserving scheme to solve the Lorentz force system.The new scheme is not only energy-preserving,but also can be arbitrarily highorder.Numerical experiments are conducted to demonstrate the notable superiority of the new method with comparison to the well-known Boris method and another second-order energypreserving method in the literature.
基金Support by Shanxi Provincial Key Research and Development Plan of China(Grant No.2024GH-ZDXM-29)National Natural Science Foundation of China(Grant No.52175120)Shaanxi Provincial Innovation Capability Support Program of China(Grant No.2024RS-CXTD-15)。
文摘Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration characteristics of rotor systems,a flexible rotor system model considering the unbalanced mass is proposed.The time-varying bearing force is considered.The developed model is verified by the experimental and theoretical frequency spectrums.The displacements and axis orbits of flexible and rigid rotor systems are compared.The results show that the unbalanced mass will affect the vibration characteristics of rotor system.This model can be more suitable and effective to calculate vibration characteristics of rotor system with the flexible deformation and unbalanced mass.This paper provides a new reference and research method for predicting the vibrations of flexible rotor system considering the unbalanced mass.
文摘Soft robots,as a modern gateway to unlocking the mysteries of underwater realms,present new complexities.Modeling their behavior when in contact with external forces,whether point-based or distributed,is a primary challenge due to the nature of soft bodies.To obtain a holistic view of the system’s behavior determining the governing dynamics is deemed necessary.This paper proposes a new technique to simulate the dynamic lateral undulation of a soft robotic fish with a cable-driven soft tail.By integrating the rigid finite element method with rigid-body robotics,the model represents the undulation of a finite number of rigid elements connected through a set of torsional spring and damper.Instead of directly modeling external forces,we substitute equivalent joint torques into the system dynamics,allowing us to consider external effects without complicating the model.The resulting model yields valuable insights into the system’s behavior,including propulsive and lateral forces.A comparison with experimental results shows strong agreement,with a tip amplitude error of 10% at 0.8 Hz,5.25% at 1.6 Hz and 2.54%at 2.2 Hz flapping frequency.These findings illuminate the influence of lateral undulation on the overall dynamics,paving the way for fully autonomous robotic fish.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the Convergence Security Core Talent Training Business Support Program(IITP-2024-RS-2024-00423071)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,and healthcare domains.This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity.It elucidates the fundamental principles underpinning interaction forces and tactile exchanges,with a specific emphasis on the crucial role of tactile devices.In this review,a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted,utilizing published journal article data as the primary source of information.The review accentuates classical control frameworks and algorithms,while also delving into existing research advancements and prospec-tive breakthrough directions.Moreover,it explores specific practical scenarios ranging from intricate surgeries to hazardous environment exploration,underscoring the technology’s potential to revolutionize industries by augmenting human manipulation of remote systems.This underscores the pivotal role of force feedback bilateral teleoperation as a transformative human-machine interface,capable of shaping flexible control strategies and addressing technological bottlenecks.Future research endeavors in force feedback bilateral teleoperation are expected to prioritize the creation of more immersive experiences,overcoming technical hurdles,fortifying human-machine collaboration,and broadening application domains,particularly within the realms of medical intervention and hazardous environments.With the continuous progression of technology,the integration of human intelligence and robotic capabilities is expected to produce more innovations and breakthroughs in the field of automatic control.
基金supported by the Opening Foundation of China National Logging Corporation(CNLC20229C06)the China Petroleum Technical Service Corporation's science project'Development and application of 475 rotary steering system'(2024T-001001)。
文摘Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB3403402)National Natural Science Foundation of China Basic Research Programme for PhD Students(Grant No.524B2049)。
文摘In the field of flexible polishing,the accuracy of contact force control directly affects processing quality and material removal uniformity.However,the complex dynamic contact model and inherent strong hysteresis of pneumatic systems can significantly impact the force control accuracy of pneumatic polishing system end-effectors.To enhance responsiveness and control precision during the flexible polishing process,this study proposes an observer-based fuzzy adaptive control(OBFAC)scheme.To ensure control accuracy under an uncertain dynamic contact model,a fuzzy state observer is designed to estimate unmeasured states,while fuzzy logic approximates the uncertain nonlinear functions in the model to improve control performance.Additionally,the integral barrier Lyapunov function is employed to ensure that all states remain within predefined constraints.The stability of the proposed control scheme is analyzed using the Lyapunov function,and a pneumatic polishing experimental platform is constructed to conduct polishing contact force control experiments under multiple scenarios.Experimental results demonstrate that the proposed OBFAC scheme achieves superior tracking control performance compared to existing control schemes.
基金Supported by National Natural Science Foundation of China(Grant No.52475137)Sichuan Provincial Science and Technology Program(Grant No.2024YFHZ0280)Sichuan Provincial Nature and Science Foundation Innovation Research Group Project(Grant No.2023NSFSC1975).
文摘During the grinding train operation process,the grinding force between the grinding wheel and the rail is critical in ensuring the grinding quality and efficiency.The coupling vibration among the frame,the grinding wheels,and the wheelsets will seriously affect the stability of the grinding force.In this paper,the coupled mechanical model of the grinding wheel/rail is established based on the contact mechanics theory,which is embedded as a submodel into the dynamic model of the multi-rigid buggy.The interaction among the frame,the grinding wheels and the wheelsets is analysed by setting the convex irregularity on the rail.The grinding effect is evaluated in combination with the subway’s long wave corrugation grinding conditions.The results show that when the grinding buggy passes the convex irregularity,the vibration excited by the wheelset system has a significant impact on the dynamic behavior of the grinding wheels.The vibration of the grinding wheel is mainly transmitted between the grinding wheel and the frame,less affecting the wheelset.For the long wave corrugation of the subway,the grinding effect of the grinding wheel has a certain correlation with the phase angle of the wheelset through the corrugation.The research results provide an important reference for the setting of the grinding pattern.
基金financial support by the National Key Research and Development Program of China(No.2023YFC2907801)the Hunan Provincial Natural Science Foundation of China(No.2023JJ40760)the Scientific and Technological Project of Yunnan Precious Metals Laboratory,China(No.YPML-2023050276)。
文摘Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.
基金The National Natural Science Foundation of China(No.60475034).
文摘A prototype of the master slave telerehabilitation robotic system with force feedback is developed. This system contains a pair of robots with the master being operated by the therapist and the slave following the master to guide the patients to exercise. A slave device with a slave controller is designed to stretch and mobilize the impaired elbow joints accurately and safely. A master device with a master controller is designed to control/monitor the procedure of treatment and assess the outcome of treatment remotely and accurately. By using the twoport network theory and the circuit equivalent impedance models, the position-force control scheme is designed to generate force feedback for the therapist who is to be informed of the interaction force between the subject and the robot arm during exercise. Experiments were conducted with a healthy male. Results show that the therapist can guide the patient to exercise by the master arm and can feel the interaction forces between the impaired arm and the robot. Compared with the traditional therapy, this system is more cost-efficient, more convenient and safer for both the stroke patients and the clinicians.
基金Under the auspices of Science and Technology Service Network Initiative Project of the Chinese Academy of Sciences(No.KFJ-EW-STS-002)
文摘Identifying the driving forces that cause changes in forest ecosystem services related to water conservation is essential for the design of interventions that could enhance positive impacts as well as minimizing negative impacts. In this study, we propose an assessment concept framework model for indirect-direct-ecosystem service (IN-DI-ESS) driving forces within this context and method for index construction that considers the selection of a robust and parsimonious variable set. Factor analysis was integrated into two-stage data envelopment analysis (TS-DEA) to determine the driving forces and their effects on water conservation services in forest ecosystems at the provincial scale in China. The results showed the following. 1) Ten indicators with factor scores more than 0.8 were selected as the minimum data set. Four indicators comprising population density, per capita gross domestic product, irrigation efficiency, and per capita food consumption were the indirect driving factors, and six indicators comprising precipitation, farmland into forestry or pasture, forest cover, habitat area, water footprint, and wood extraction were the direct driving forces. 2) Spearman's rank correlation test was performed to compare the overall effectiveness in two periods: stage 1 and stage 2. The calculated coefficients were 0.245, 0.136, and 0.579, respectively, whereas the tabulated value was 0.562. This indicates that the driving forces obviously differed in terms of their contribution to the overall effectiveness and they caused changes in water conservation services in different stages. In terms of the variations in different driving force effects in the years 2000 and 2010, the overall, stage 1, and stage 2 variances were 0.020, 0.065, and 0.079 in 2000, respectively, and 0.018, 0.063, and 0.071 in 2010. This also indicates that heterogeneous driving force effects were obvious in the process during the same period. Identifying the driving forces that affect service changes and evaluating their efficiency have significant policy implications for the management of forest ecosystem services. Advanced effectiveness measures for weak regions could be improved in an appropriate manner. In this study, we showed that factor analysis coupled with TS-DEA based on the IN-D1-ESS framework can increase the parsimony of driving force indicators, as well as interpreting the interactions among indirect and direct driving forces with forest ecosystem water conservation services, and reducing the uncertainty related to the internal consistency during data selection.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force control inevitably.In the recent years,although many scholars researched some control methods such as disturbance rejection control,parameter self-adaptive control,impedance control and so on,to improve the force control performance of HDU,the robustness of the force control still needs improving.Therefore,how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper.The force control system mathematic model of HDU is established by the mechanism modeling method,and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived,considering the dynamic characteristics of the load stiffness and the load damping under different environment structures.Then,simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform,which provides the foundation for the force control compensation experiment research.In addition,the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping,under which the force control compensation method is introduced,and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment.The research results indicate that if the load characteristics are known,the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation,i.e.,this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters,thereby,the online PID parameters tuning control method which is complex needs not be adopted.All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金Supported by National Natural Science Foundation of China(Grant No.51475263)
文摘The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process of collision that often occurs in gear system. Focus on the contact-impact events, this paper proposes an improved gear contact force model for dynamic analysis in helical gear transmission system. In this model, a new factor associated with hysteresis damping is developed for contact-impact state, whereas the traditional linear damping factor is utilized for normal meshing state. For determining the selection strategy of these two damping factors, the fundamental contact mechanics of contact-impact event a ected by supporting forces are analyzed. During this analysis, an e ect factor is proposed for evaluating the influence of supporting forces on collision. Meanwhile, a new restitution of coe cient is deduced for calculating hysteresis damping factor, which suitable for both separation and non-separation states at the end of collision. In addition, the time-varying meshing sti ness(TVMS) is obtained based on the potential energy approach and the slice theory. Finally, a dynamic analysis of a helical gear system is carried out to better understand the contact force model proposed in this paper. The analysis results show that the contribution of supporting forces to the dynamic response of contact-impact event within gear pair is important. The supporting forces and dissipative energy are the main reasons for gear system to enter a steady contact state from repeated contact-impact state. This research proposes an improved contact force model which distinguishes meshing and collision states in gear system.
基金Supported by National Natural Science Foundation of China(Grant No.51605417)Key Project of Hebei Provincial Natural Science Foundation,China(Grant No.E2016203264)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)
文摘Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.
基金Sponsored by Open Fund of Key Laboratory for Metallurgical Equipment and Control of Education Ministry of China(2013B03)
文摘The calculation of force for a roll system has significant effects on cold roiled thin strip gauge adjustment of a 20-high Sendzimir mill. According to the rolling parameters and rolling plans of a ZR 22B-42 Sendzimir mill in a silicon steel factory, the contact force and the resultant force of each roll in the roll system were calculated both in the static state and in the rolling state through C++ programs. It was found that the contact force between the see ond intermediate driven roll and the back up rolls B and C was much lower than that between the other rolls in static state. The results also demonstrated that the resultant force are 59.5%-62%, 37.7%-40.3%, 87.1%-88.7% and 53.9%-56.7% of the rolling force at the second intermediate driven roll, the second intermediate idler roll, the back-up rolls B and C and the back-up rolls A and D, respectively. It was also revealed that the minimum contact force generated between the first intermediate roll and the second intermediate idler roll is 206.7 kN on the first roll ing pass, and that on the second rolling pass, the minimum contact force generated between the second intermediate driven roll and the back-up roll C is 470.7 kN.
基金Projects(51605051,51975068)supported by the National Natural Science Foundation of ChinaProject(3102020HHZY030001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs.
基金Under the auspices of the National Key Research and Development Program(No.2016YFC0500201,2016YFC0501001)the Key Laboratory Cooperative Research Project of Chinese Academy of Sciences,Natural Science Foundation of China(No.41601036)。
文摘The research on ecosystem service values(ESVs)estimation in arid region is weak.We took the Alxa League of China’s Inner Mongolia Autonomous Region,an extreme arid region,as an example and constructed an equivalent coefficient method to assess its ESVs from 1975 to 2015,by determining the standard unit of ESVs and the basic equivalent of the value of different ecosystem services per unit area based on the regional characteristics,literature research,expert knowledge and land use data.The results show that the ESVs first decreased from 83170.4 million yuan(RMB)in 1975 to 82337.8 million yuan(RMB)in 2000 and then increased to84033.6 million yuan(RMB)in 2015,and the ESV of sparse grassland and desert account for about 33%and 29%of the total ESVs,respectively.Among the four service types,the regulating services,support services,supply services and cultural services account for66.5%,22.8%,6.0%and 4.7%,respectively.The changes of ESVs in Alxa League are determined by the socio-economic development and ecological changes.This study provides a new method to estimate the ESVs in arid region by integrating existing methods and regional characteristics,such as the cost of water for arid ecosystems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 20273065 and 10474094) and ‘the Knowledge Innovation Program' of Chinese Academy of Sciences.
文摘The technique of optical tweezers has been improved a lot since its invention, which extends the application fields of optical tweezers. Besides the conventionally used Gaussian beams, different types of ring beams have also been used to form optical tweezers for different purposes. The two typical kinds of ring beams used in optical tweezers are the hollow Gaussian beam and Laguerre-Gaussian (LG) beam. Both theoretical computation and experiments have shown that the axial trapping force is improved for the ring beams compared with the Gaussian beam, and hence the trapping stability is improved, although the transverse trapping forces of ring beams are smaller than that of Gaussian beam. However, no systematic study on the trapping forces of ring beam has ever been discussed. In this article, we will investigate the axial and transverse trapping forces of different types of ring beams with different parameters systematically, by numerical computation in which the ray optics model is adopted. The spherical aberration caused by the refractive index mismatch between oil and water is also considered in the article. The trapping forces for different objectives that obey the sine condition and tangent condition are also compared with each other. The result of systematical calculation will be useful for the applications of optical tweezers formed by different types of ring beams.
基金supported by National High Technology Development Program of China(No. 51575256)
文摘A virtual interventional surgical system with force feedback is designed to provide practice before complicated interventional operation and assistance during operation.The collision detection,vessel deformation calculating and virtual force computing of the virtual system are implemented by using skeleton spring model as the physical modeling foundation,which is based on the mass spring model and easy to construct with high computing efficiency.In order to increase the real time performance,the central plane of the vessel model is extracted and then simplified to complete the skeleton filling.The initiative bending kinematics of the virtual catheter is analyzed so as to provide the virtual system with higher fidelity.The experimental results show that the virtual system can well simulate the vessel deformation and force feedback within an interventional surgery,which gives the virtual system better immersion.
基金SponsoredbytheNationalNaturalScienceofFoundationofChina (No .19990 5 10 )andNaturalScienceFoundationofHeilongjiangprovince
文摘Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation analysis because they are either of poor accuracy or time consuming. Oil film forces database is proposed is to transform the journal speed variation range in radial and circumferential directions from (-∞,+∞) to (-1, +1). The numerical results show the suggested method is much more effective. And sub harmonic, quasi periodic and chaotic vibrations are predicted for a range of speed and unbalance parameters.