期刊文献+
共找到7,156篇文章
< 1 2 250 >
每页显示 20 50 100
A step-by-step Chebyshev space-time spectral method for force vibration of functionally graded structures
1
作者 Haizhou Liu Yixin Huang Yang Zhao 《Acta Mechanica Sinica》 2025年第4期142-155,共14页
This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the acc... This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases. 展开更多
关键词 Functionally graded materials Space-time spectral method Step-by-step approach forced vibration
原文传递
Method for Decreasing the Peak Actuating Force and Parasitic Displacements of 4-4R Compliant Parallel Pointing Mechanism through Redundant-actuation
2
作者 Jun Ren Yikang Shu Shusheng Bi 《Chinese Journal of Mechanical Engineering》 2025年第4期300-315,共16页
Reducing the peak actuating force(PAF)and parasitic displacement is of high significance for improving the performance of compliant parallel mechanisms(CPMs).In this study,a 2-DOF 4-4R compliant parallel pointing mech... Reducing the peak actuating force(PAF)and parasitic displacement is of high significance for improving the performance of compliant parallel mechanisms(CPMs).In this study,a 2-DOF 4-4R compliant parallel pointing mechanism(4-4R CPPM)was used as the object,and the actuating force of the mechanism was optimized through redundant actuation.This was aimed at minimizing the PAF and parasitic displacement.First,a kinetostatic model of the redundantly actuated 4-4R CPPM was established to reveal the relationship between the input forces/displacements and the output displacements of the mobile platform.Subsequently,based on the established kinetostatic model,methods for optimizing the actuating force distribution with the aim of minimizing the PAF and parasitic displacement were introduced successively.Second,a simulated example of a mobile platform’s spatial pointing trajectory validated the accuracy of the kinetostatic model.The results show a less than 0.9%relative error between the analytical and finite element(FE)results,and the high consistency indicates the accuracy of the kinetostatic model.Then,the effectiveness of the method in minimizing the PAF and parasitic displacement was validated using two simulated examples.The results indicate that compared with the non-redundant actuation case,the PAF of the mechanism could be reduced by up to 50%,and the parasitic displacement was reduced by approximately three-four orders of magnitude by means of redundant actuation combined with the optimal distribution of the actuating force.As expected,with the reduction in parasitic displacement,the FE-results of the output angular displacements(θ_(x) andθ_(z))of the mobile platform were closer to the target oscillation trajectory.This further verified that the reduction in parasitic displacement is indeed effective in improving the motion accuracy of the mechanism.The advantage of this proposed method is that it reduces the PAF and parasitic displacement from the perspective of the actuating force control strategy,without the requirement of structural changes to the original mechanism. 展开更多
关键词 Compliant parallel mechanism(CPM) Compliance matrix method Kinetostatic Redundant-actuation Parasitic displacement Peak actuating force(PAF)
在线阅读 下载PDF
Multiple scales method for analyzing a forced damped rotational pendulum oscillatorwithgallows
3
作者 Haifa A Alyousef Alvaro H Salas +1 位作者 B M Alotaibi S A El-Tantawy 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第5期58-67,共10页
This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of... This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations. 展开更多
关键词 rotational pendulum system multiple scales method approximate solution damped oscillations forced pendulum with gallows he-multiple scales method
原文传递
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
4
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification Non-convex sparse regularization Alternating direction method of multipliers Proximal operators
在线阅读 下载PDF
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
5
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
在线阅读 下载PDF
Accurate calculation of induced electromotive force for axial field hybrid permanent magnet memory machine
6
作者 YANG Gongde MA Junchao LIN Mingyao 《Journal of Southeast University(English Edition)》 2025年第3期375-383,共9页
The axial field hybrid permanent magnet memory machine(AFHPM-MM)employs a hybrid permanent magnet excitation combining NdFeB and AlNiCo,achieving high torque density and a wide flux adjustment range.A separated stator... The axial field hybrid permanent magnet memory machine(AFHPM-MM)employs a hybrid permanent magnet excitation combining NdFeB and AlNiCo,achieving high torque density and a wide flux adjustment range.A separated stator structure is adopted to enhance its antidemagnetization capability.To analyze the contributions of AlNiCo and NdFeB to the induced electromotive force(EMF)in the AFHPM-MM,a frozen permeability-based induced EMF calculation method is proposed.Theoretical analysis reveals that the conventional method exhibits substantial errors in calculating the AlNiCo-induced EMF,primarily attributed to its failure to adequately account for the dynamic magnetization characteristic discrepancies of AlNiCo under varying magnetization states.Through the analysis of magnetization variations in AlNiCo during the flux adjustment process under different magnetization states,an improved induced EMF calculation method is proposed.Comparative results indicate that,during the flux enhancement process,the average calculation error of the AlNiCo-induced EMF is reduced from 19.84%to 2.09%,whereas during the flux weakening process,the error is reduced from 3.87%to 1.67%.The proposed method achieves accurate induced EMF calculation for the AFHPM-MM. 展开更多
关键词 axial field hybrid permanent magnet excita-tion memory machine induced electromotive force(emf) accurate calculation
在线阅读 下载PDF
Study on Influencing Factors of Parafoil Maximum Opening Force
7
作者 QIU Bowen YU Li YANG Zijian 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第5期648-658,共11页
In order to explore the opening force variation rules and influencing factors of parafoil opening process,a dynamic model for parafoil opening process is established in this paper.The performance of the parafoil openi... In order to explore the opening force variation rules and influencing factors of parafoil opening process,a dynamic model for parafoil opening process is established in this paper.The performance of the parafoil opening process is calculated using the RungeKutta method.The calculation results are consistent with the patterns of the existing literatures,showing a maximum opening force error of 4.8%.Based on this,simulations are conducted for 20 different operating conditions of the parafoil system,and the rules governing the changes in system motion speed and parafoil opening force are obtained.The influence of the parafoil parameters and opening conditions on the opening force is also investigated.The results indicate that the opening force is positively correlated with the load mass,the opening speed,and trajectory angle,while it is negatively correlated with the opening height.The peak time of the opening force is affected by aerodynamic force and decelerating inertia force.As the weight and the opening height increase,the system deceleration becomes slower,and the peak time of the opening force is delayed.The aerodynamic force increases with the canopy area and the opening speed,leading to an advancement in the peak time of the opening force.Finally,the Sobol global sensitivity analysis method is employed to obtain the firstorder sensitivity and total sensitivity coefficients of the parafoil parameters and opening conditions on parafoil maximum opening force.The results show that the opening speed and the load mass significantly affect the maximum opening force.The firstorder sensitivity coefficients of 0.4107 and 0.3136,respectively;and the total sensitivity coefficients of 0.4775 and 0.3752,respectively.The sensitivity of the canopy area is at a moderate level,with the firstorder and total sensitivity coefficients of 0.0749 and 0.0851,respectively.The sensitivity coefficients for the opening height and the opening angle are close to zero,indicating that fluctuations in their values have little effect on the maximum opening force. 展开更多
关键词 PARAFOIL opening force DYNAMICS Sobol method sensitivity analysis
在线阅读 下载PDF
Calculation algorithm for the space charge force of a train with infinite bunches
8
作者 San-Hai Ren Hong-Yu Li +5 位作者 Jia-Ru Shi Hao Zha Wei-Hang Gu Qiang Gao Qian Tan Huai-Bi Chen 《Nuclear Science and Techniques》 2025年第6期13-25,共13页
Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot... Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot be neglected.In this study,an algorithm is introduced for calculating the space charge force of a train with infinite bunches.By utilizing the ring charge model and the particle-in-cell(PIC)method and combining analytical and numerical methods,the proposed algorithm efficiently calculates the space charge force of infinite bunches,enabling the accurate design of accelerator parameters and a comprehensive understanding of the space charge force.This is a significant improvement on existing simulation software such as ASTRA and PARMELA that can only handle a single bunch or a small number of bunches.The PIC algorithm is validated in long drift space transport by comparing it with existing models,such as the infinite-bunch,ASTRA single-bunch,and PARMELA several-bunch algorithms.The space charge force calculation results for the external acceleration field are also verified.The reliability of the proposed algorithm provides a foundation for the design and optimization of industrial accelerators. 展开更多
关键词 Particle-in-cell method Space charge force ALGORITHM Infinite bunches
在线阅读 下载PDF
Hydrodynamical characterization of nanofluidic flow driven by forced convection via a four-sided lid-driven cavity
9
作者 M.USMAN M.HAMID +1 位作者 W.A.KHAN R.U.HAQ 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1383-1402,共20页
The unsteady magnetohydrodynamical(MHD)free convection flow of an incompressible,electrically conducting hybrid nanofluid within a vertical cylindrical geometry is investigated,incorporating the effects of thermal rad... The unsteady magnetohydrodynamical(MHD)free convection flow of an incompressible,electrically conducting hybrid nanofluid within a vertical cylindrical geometry is investigated,incorporating the effects of thermal radiation,viscous dissipation,and internal heat generation.The system is subjected to a time-periodic boundary temperature condition.The Laplace and finite Hankel transforms are used to derive the exact solutions for the velocity and temperature distributions.The effects of various key physical parameters,including the Richardson number,the Eckert number,the radiation parameter,the heat source parameter,and the nanoparticle volume fraction,are considered.The numerical results reveal that increasing the volume fraction significantly enhances the thermal conductivity and temperature,while the magnetic field intensity and viscous dissipation strongly influence the fluid motion and heat transport.Additionally,the pulsating boundary conditions produce distinct oscillatory behaviors in both the velocity and temperature fields.These findings provide important insights into optimizing the heat transfer performance in cylindrical systems such as electronic cooling modules and energy storage devices operating under dynamic thermal conditions. 展开更多
关键词 forced convection lid-driven cavity STREAMLINE finite element method
在线阅读 下载PDF
A Hybrid Simulation-Experimental Method for Deriving Equivalent Dynamic Parameters of O-Ring Support Systems
10
作者 LIU Yi YE He +3 位作者 ZHANG Lingfeng LI Shujia CHEN Ge WANG Yongxing 《Journal of Donghua University(English Edition)》 2025年第4期425-434,共10页
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica... The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus. 展开更多
关键词 O-RING equivalent dynamic parameter forced non-resonance method inverse parameter estimation dynamic simulation
在线阅读 下载PDF
New Insights into China’s Regional Tourism Sustainability: A Driving- Forces Perspective
11
作者 Sun Genjin Liu Jinyi 《Contemporary Social Sciences》 2025年第5期85-102,共18页
Sustainable development,underpinned by robust systemic driving forces,is central to the growth of high-quality tourism.Therefore,identifying these forces at the regional level is crucial for advancing China’s goal of... Sustainable development,underpinned by robust systemic driving forces,is central to the growth of high-quality tourism.Therefore,identifying these forces at the regional level is crucial for advancing China’s goal of becoming a leading nation for tourism.This study accordingly constructs a new evaluation system that covers tourism market demand,industry supply,and structural transformation,and analyzes data from 31 Chinese provincial regions(2010–2019).The entropy method and spatial autocorrelation analysis were applied to examine the driving forces for sustainable regional tourism development.The results revealed that:First,at the national level,the driving forces for sustainable regional tourism development exhibited a clear upward trend from 2010 to 2019,with an acceleration in growth after 2015.However,there was significant regional heterogeneity:The eastern region displayed the highest levels of driving forces,followed by the central and western regions.Second,high-value clusters of these driving forces expanded from the eastern to the western regions,while the central provinces remained relatively balanced.Specifically,provincial regions such as Guangdong,Beijing,and Zhejiang were able to successively enter the high-value clusters,whereas the Xinjiang Uygur autonomous region,Gansu,and Qinghai consistently remained in the low-value clusters.Third,the driving forces exhibited a significant spatial agglomeration effect.The degree of clustering followed an inverted“U”trend over the study period,while the spatial patterns of the provincial regions remained relatively stable. 展开更多
关键词 sustainable tourism development driving forces spatial pattern evolution entropy method spatial autocorrelation
在线阅读 下载PDF
Aero-propulsion analysis of distributed ducted-fan propulsion based on lifting-line driven body-force model
12
作者 Hanru LIU Xingyu ZHAO +2 位作者 Fang ZHOU Yuyao FENG Yangang WANG 《Chinese Journal of Aeronautics》 2025年第2期60-74,共15页
As the environmental problems become increasingly serious,distributed electrical propulsion systems with higher aerodynamic efficiency and lower pollution emission have received extensive attention in recent years.The... As the environmental problems become increasingly serious,distributed electrical propulsion systems with higher aerodynamic efficiency and lower pollution emission have received extensive attention in recent years.The distributed electrical propulsion usually employs the new aero-propulsion integrated configuration.A simulation strategy for internal and external flow coupling based on the combination of lifting line theory and body force method is proposed.The lifting line theory and body force method as source term are embedded into the Navier-Stokes formulation.The lift and drag characteristics of the aero-propulsion coupling configuration are simulated.The results indicate that the coupling configuration has the most obvious lift augmentation at 12°angle of attack,which can provide an 11.11%increase in lift for the airfoil.At 0°angle of attack,the pressure difference on the lip parts provides the thrust component,which results in a lower drag coefficient.Additionally,the failure impact of a ducted fan at the middle or edge on aerodynamics is investigated.For the two failure conditions,the lift of the coupling configuration is decreased significantly by 27.85%and 26.14%respectively,and the lip thrust is decreased by 70.74%and 56.48%respectively. 展开更多
关键词 Ducted fan Distributed electrical PROPULSION Lifting line theory Body force method Aero-propulsion integrated CONFIGURATION
原文传递
Prediction model for austenite grain size in CGHAZ of TiN-containing steel: considering minimum pinning force and austenite coarsening dynamics
13
作者 Jun-jie Hao Chao Wang +3 位作者 Hua Duan Zhu Yan Guo Yuan Guo-dong Wang 《Journal of Iron and Steel Research International》 2025年第8期2564-2578,共15页
A metallurgical model for austenite coarsening in the coarse-grained heat-affected zone(CGHAZ)containing titanium nitride(TiN)precipitation was studied.Unlike traditional methods estimating pinning capability based on... A metallurgical model for austenite coarsening in the coarse-grained heat-affected zone(CGHAZ)containing titanium nitride(TiN)precipitation was studied.Unlike traditional methods estimating pinning capability based on the precipitation size after welding,a proposed dissolution and coarsening model was applied to study the changes in TiN precipitation size and the associated pinning forces.The transmission electron microscope was used to analyze the size distribution of TiN particles before and after the welding thermal cycle.The size distribution showed a log-normal distribution before the thermal cycle.The prediction of post-thermal cycle size distributions with the proposed model was in agreement with the experimental results.Considering the short holding time at high temperature during welding,the thermodynamic stability conditions required for limiting grain size model cannot be achieved.A simple kinetic model for the prediction of austenite grain size in CGHAZ was established.Finally,the predicted austenite grain sizes agree better with experimental results than the conventional approach. 展开更多
关键词 Coarse-grained heat-affected zone High heat input welding Limiting grain size In situ method Pinning force
原文传递
Research on the Evaluation of the Development Level of New Quality Productive Forces in China's Agriculture
14
作者 Mengyu Hao Yanming Xie +1 位作者 Qinglin Chen Zhande Zhou 《Journal of Frontier in Economic and Management Research》 2025年第1期1-14,共14页
Cultivating new agricultural productive forces is an inherent requirement and a key focus for promoting high-quality agricultural development and building a strong agricultural country.Based on panel data from 30 prov... Cultivating new agricultural productive forces is an inherent requirement and a key focus for promoting high-quality agricultural development and building a strong agricultural country.Based on panel data from 30 provinces and cities in China's mainland from 2012 to 2022,the entropy method,Dagum Gini coefficient,and Moran's I were used to study the development level of new agricultural productive forces.The results show that:first,the development level of China's new agricultural productive forces has steadily improved,and at the regional level,it shows a decreasing trend in the order of the eastern,central,western,and northeastern regions;second,the degree of inequality in the development of China's new agricultural productive forces has continued to expand,and the inter-regional gap is the main reason for the unbalanced development;third,the development of China's new agricultural productive forces has a positive spatial autocorrelation in space,with a concentrated distribution.Accordingly,policy recommendations are put forward from the perspective of the overall development level and regional difference characteristics of new agricultural productive forces. 展开更多
关键词 agricultural new quality productive forces development level entropy method Dagum Gini coefficient Moran’s index
在线阅读 下载PDF
Damage evolution of surrounding sandstone rock under charging–discharging cyclic loading in the natural gas storage of abandoned mines based on the discrete element method
15
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Erwin Oh Jun Hu Ruichong Zhang 《Deep Underground Science and Engineering》 2025年第2期329-338,共10页
Gas storage in abandoned mines is one way to reuse waste space resources.The surrounding rock of gas storage reservoirs in underground roadways undergoes damage and deformation under the cyclic loading of gas charging... Gas storage in abandoned mines is one way to reuse waste space resources.The surrounding rock of gas storage reservoirs in underground roadways undergoes damage and deformation under the cyclic loading of gas charging and discharging,which can pose a risk to the safety of the reservoirs.This study establishes a true triaxial numerical model of rock mass with the discrete element method(DEM)and explores the crack evolution of surrounding rock of underground gas storage during cyclic loading and unloading.Also,a damage evolution model in numerical analysis considering residual deformation is developed to explain the experimental results.As was revealed,cyclic loading and unloading resulted in fatigue damage in the specimen and caused strength deterioration of the specimen.During the loading process,the uniformly distributed force chains of the rock mass redistributed,evolving gradually to mostly transverse force chains.This contributed to the appearance of blank areas in the force chains when through cracks appear.The ratio of tensile cracks to shear cracks gradually decreases and finally stabilizes at 7:1.The damage evolution model considering residual strain can be mutually verified with the numerical simulation results.Based on the DEM model,it was found that there was a certain threshold of confining pressure.When the confining pressure exceeded 30 MPa,the deformation to ductility of sandstone samples began to accelerate,with a greater residual strength.This study provides a theoretical basis for analyzing the long-term mechanical behavior of surrounding rock of gas storage in abandoned mines. 展开更多
关键词 damage evolution model of surrounding rock discrete element method force chains gas charging-discharging cycle gas storage in abandoned mines
原文传递
Cutting Force and State Identification in High-Speed Milling:a Semi-Analytical Multi-Dimensional Approach
16
作者 Yu Zhang Xianyin Duan Kunpeng Zhu 《Chinese Journal of Mechanical Engineering》 2025年第1期140-160,共21页
High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high signific... High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high significance.However,considering the tool runout and size effects,many proposed models focus on the material and mechanical characteristics.This study presents a novel approach for predicting micromilling cutting forces using a semianalytical multidimensional model that integrates experimental empirical data and a mechanical theoretical force model.A novel analytical optimization approach is provided to identify the cutting forces,classify the cutting states,and determine the tool runout using an adaptive algorithm that simplifies modeling and calculation.The instantaneous un-deformed chip thickness(IUCT)is determined from the trochoidal trajectories of each tool flute and optimized using the bisection method.Herein,the computational efficiency is improved,and the errors are clarified.The tool runout parameters are identified from the processed displacement signals and determined from the preprocessed vibration signals using an adaptive signal processing method.It is reliable and stable for determining tool runout and is an effective foundation for the force model.This approach is verified using HSM tests.Herein,the determination coefficients are stable above 0.9.It is convenient and efficient for achieving the key intermediate parameters(IUCT and tool runout),which can be generalized to various machining conditions and operations. 展开更多
关键词 Cutting force Tool runout Bisection method Discrete Fourier transform Generalization Table 1 The recursive algorithm of the least-squares solution of the coefficient matrix Kx
在线阅读 下载PDF
Effect of forced lamina flow on microsegregation simulated by phase field method quantitatively 被引量:4
17
作者 王军伟 王智平 +3 位作者 路阳 朱昌盛 冯力 肖荣振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期391-397,共7页
The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled wi... The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow. 展开更多
关键词 computer simulation phase field method solidification forced lamina flow MICROSEGREGATION solute redistribution shrinkage cavity
在线阅读 下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
18
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
在线阅读 下载PDF
Base force element method of complementary energy principle for large rotation problems 被引量:9
19
作者 Yijiang Peng Yinghua Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期507-515,共9页
Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacemen... Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM. 展开更多
关键词 Base force element method (BFEM) Complementary energy principle Lagrange multiplier method Geometrically nonlinear Large rotation
在线阅读 下载PDF
Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method 被引量:9
20
作者 ZHANG Dawei LI Yongtang +1 位作者 FU Jianhua ZHENG Quangang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期688-695,共8页
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o... Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling. 展开更多
关键词 external spline cold rolling slip-line field method rolling force rolling moment
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部