Rare earth permanent magnets Sm(Co, Fe, Cu, Zr)z with outstanding performance and high-temperature thermal stability were fabricated. Optimized by Fe content and process, Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5 magnet with...Rare earth permanent magnets Sm(Co, Fe, Cu, Zr)z with outstanding performance and high-temperature thermal stability were fabricated. Optimized by Fe content and process, Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5 magnet with B1〉0.75 T and Hci〉1300 kA/m at 300 ℃ can be obtained. According to the performance data of Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5, the magnetic field along central axis Bz in periodic permanent magnet (PPM) focusing system was simulated using electromagnetic field analysis software Maxwell 2D/3D. The Bz exhibited typical cosine curve along central axis, and the peak value of Bz was high enough to meet the demand of PPM focusing system at room temperature even at 200±20 ℃. Additionally, a kind of simple cooling structure for PPM focusing system was designed by setting cooling pipe between polepieces. Simulated results showed that smooth cosine curve of Bz was successfully achieved with good control of the thickness of cooling pipe.展开更多
In this study, finite element analysis based on an Ansoft Maxwell software was used to reveal the temperature stability of a magnet ring and the equivalent structural periodic permanent-magnet(PPM) focusing system. ...In this study, finite element analysis based on an Ansoft Maxwell software was used to reveal the temperature stability of a magnet ring and the equivalent structural periodic permanent-magnet(PPM) focusing system. It is found that with the temperature increasing, the decrease rate of magnetic induction peak(Bz)maxof single magnet ring is greater than that of remanence Brof magnet in the range from room temperature to 200 °C, however,the PPM focusing system do have the same temperature characteristics of permanent-magnet materials. It indicates that the magnetic temperature properties of the PPM system can be effectively controlled by adjusting the temperature properties of the magnets. Moreover, the higher permeability of the magnets indicates the less Hcb, giving rise to lower magnetic induction peak (Bz)′max: Finally, it should be noted that the magnetic orientation deviation angle θ(/15°) of permanent magnets has little effect on the focusing magnetic field of the PPM system at different temperatures and the temperature stability. The obtained results are beneficial to the design and selection of permanent magnets for PPM focusing system.展开更多
The effect of plasma and charged particle interaction with spacecraft in a low Earth orbit(LEO)environment leads to ion focusing and the formation of an ion void in the downstream region as a result of charging.Simula...The effect of plasma and charged particle interaction with spacecraft in a low Earth orbit(LEO)environment leads to ion focusing and the formation of an ion void in the downstream region as a result of charging.Simulations and investigations using a fixed potential imposed on the spacecraft showed the nonsignificance of geophysical parameter changes to ion focusing.Variation of the temperature ratio(T_(r))contributed only to local ion focusing and manifested as two-ion streamers dispersed at the upper and lower edges of the spacecraft-the outermost layers of the satellite structure at the top and bottom,respectively.A simulation involving changing the ambient plasma density(N_(p))also showed the formation of local ion focusing,in which ions were more concentrated as the density increased.Furthermore,auroral electron density(N_(ae))variation had no clear impact on ion focusing,as indicated by static two-ion structures in the wake field.However,variation of the object potential(ϕ)strongly affected ion focusing formation,leading to distortion of the initial ion void region behind the spacecraft.The formation of ion focusing in this study was subject to the electric field produced by the object potential and the ambipolar electric field resulting from plasma expansion in the downstream region.展开更多
In this paper, we study a mathematical model of electron beam focusing system. We prove the existence of periodic solutions to the model using homotopy method.
Benefiting from the induced image charge on film surface,the nanoparticle aggregating on metal exhibits interesting optical properties.In this work,a linear metal nanoparticle trimer on metal film system has been inve...Benefiting from the induced image charge on film surface,the nanoparticle aggregating on metal exhibits interesting optical properties.In this work,a linear metal nanoparticle trimer on metal film system has been investigated to explore the novel optical phenomenon.Both the electric field and surface charge distributions demonstrate the light is focused on film greatly by the nanoparticles at two sides,which could be strongly modulated by the wavelength of incident light.And the influence of nanoparticle in middle on this light focusing ability has also been studied here,which is explained by the plasmon hybridization theory.Our finding about light focusing in nanoparticle aggregating on metal film not only enlarges the novel phenomenon of surface plasmon but also has great application prospect in the field of surface-enhanced spectra,surface catalysis,solar cells,water splitting,etc.展开更多
Dynamically tunable terahertz(THz)beam focusing plays a critical role in emerging applications including reconfigurable imaging,localized spectral analysis,and micro-machining.Conventional methods,however,frequently e...Dynamically tunable terahertz(THz)beam focusing plays a critical role in emerging applications including reconfigurable imaging,localized spectral analysis,and micro-machining.Conventional methods,however,frequently employ complex wavefront modulators and external control algorithms,resulting in increased system footprint and limited tuning efficiency.In this work,we present an all-silicon mechanically rotatable cascaded metasurface capable of dynamic THz beam focusing.By independently adjusting the relative rotation angles between the two metasurface layers,real-time repositioning of the focal spot is achieved for orthogonal circular polarization channels.The proposed design facilitates polarization-division multiplexing without requiring external algorithms or active materials while preserving high focusing efficiency and beam quality across a predefined focal plane.Numerical simulations reveal a quasi-linear shift of the focal position with the rotation angle,with stable focusing efficiency and full-width at half-maximum observed in both polarization channels.This strategy offers an efficient and reliable approach to dynamic wavefront control for compact,reconfigurable THz imaging,sensing,and communication systems.展开更多
Hall thrusters with large height-radius ratio,owing to their unique advantages in compactness,lightweight,and high performance,have progressively emerged as a preferred choice for diverse space propulsion applications...Hall thrusters with large height-radius ratio,owing to their unique advantages in compactness,lightweight,and high performance,have progressively emerged as a preferred choice for diverse space propulsion applications in the future.However,the amplification of the annular effect in structures with a large height-radius ratio poses a practical problem of plume over-focusing,which seriously restricts the further improvement of Hall thruster performance and the extension of its life.In this study,the formation mechanism of over-focused plume is deeply investigated,and it is ascertained that an intensified radial electric field directed towards the inner wall within the channel serves as a key contributing factor.This phenomenon is fundamentally attributed to structural characteristics of large height-radius ratio that induce pronounced inward inclination of field lines within strong magnetic field zone.Based on this,the design concept of focused magnetic field is proposed,wherein straight magnetic field lines are established within the strong magnetic field zone to generate a quasi-axial accelerating electric field.Simultaneously,the symmetrical magnetic field inside the channel ensures ionization concentration near the channel center,thereby achieving optimal matching between the ionization zone and accelerating field.Experimental results demonstrate that employing a focused magnetic field significantly reduces the divergence half-angle of the plume and yields an excellently barrel-shaped focusing plume morphology in HEP-1350PM.Consequently,the total efficiency of the thruster surpasses 60%,while erosion belt on the inner wall is shortened by nearly 50%.These advancements effectively enhance thruster performance and prolong its operational lifespan.This study can not only resolve practical problems associated with plume over-focusing,but also provide a fundamental guiding principle for magnetic field design of Hall thrusters.展开更多
This study utilizes a visualization nozzle and spray experimental platform to experimentally investigate the flow focusing/blurring nozzle.It is found that the working mode of the nozzle transitions from flow focusing...This study utilizes a visualization nozzle and spray experimental platform to experimentally investigate the flow focusing/blurring nozzle.It is found that the working mode of the nozzle transitions from flow focusing to flow transition and eventually to flow blurring as the gas flow rate increases or the tube hole distance decreases.Conversely,an increase in liquid flow rate only facilitates the transition from flow focusing to flow transition.Changes in the gas/liquid flow rate or tube hole distance influence the gas shear effect and the gas inertial impact effect inside the nozzle,which in turn alters the working mode.An increase in gas flow rate results in a shift of the droplet size distribution towards smaller particle sizes in the flow blurring mode,whereas an increase in liquid flow rate produces the opposite effect.Notably,the impact of the gas flow rate on these changes is more pronounced than that of the liquid flow rate.展开更多
Ultra-intense electromagnetic fields exceeding 10^(23)W∕cm^(2)are enabling breakthroughs in compact laser-driven particle accelerators and revealing new quantum electrodynamics(QED)phenomena.However,conventional lase...Ultra-intense electromagnetic fields exceeding 10^(23)W∕cm^(2)are enabling breakthroughs in compact laser-driven particle accelerators and revealing new quantum electrodynamics(QED)phenomena.However,conventional laser-focusing methods face considerable engineering challenges and require substantial costs.Focusing schemes utilizing plasma optics can produce sub-micrometer focus spots beyond the diffraction limit and substantially enhance the peak intensity;however,owing to significant energy dissipation,they may fail to simultaneously increase the laser fluence.To address these challenges,we propose a focusing scheme employing a near-critical-density hollow plasma fiber(HPF)that utilizes graded refractive index dynamics to boost both laser peak intensity and fluence at the same time.Three-dimensional particle-in-cell simulations demonstrate the HPF’s capability to focus a 4.5-μm-diameter Gaussian beam to a sub-diffraction-limited 0.6-μm-diameter spot.The peak intensity and laser fluence can be enhanced by factors of 22 and 10,respectively,marking a substantial improvement over existing plasma-based focusing schemes.Furthermore,the proposed scheme exhibits wide-range parameter adaptation and high robustness,making it suitable for direct implementation in PW-class ultra-intense laser experiments.展开更多
Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing...Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing.However,elastic coding lenses(ECLs)still suffer from low focusing performance,thickness comparable to wavelength,and frequency sensitivity.Here,we consider both the structural and material properties of the coding unit,thus realizing further compression of the thickness of the ECL.We chose the simplest ECL,which consists of only two encoding units.The coding unit 0 is a straight structure constructed using a carbon fiber reinforced composite material,and the coding unit 1 is a zigzag structure constructed using an aluminum material,and the thickness of the ECL constructed using them is only 1/8 of the wavelength.Based on the theoretical design,the arrangement of coding units is further optimized using genetic algorithms,which significantly improves the focusing performance of the lens at different focus and frequencies.This study provides a more effective way to control vibration and noise in advanced structures.展开更多
Adjustable or programmable metamaterials offer versatile functions,while the complex multi-dimensional regulation increases workload,and hinders their applications in practical scenarios.To address these challenges,we...Adjustable or programmable metamaterials offer versatile functions,while the complex multi-dimensional regulation increases workload,and hinders their applications in practical scenarios.To address these challenges,we present a mechanically programmable acoustic metamaterial for real-time focal tuning via one-dimensional phase-gradient modulation in this paper.The device integrates a phase gradient structure with concave cavity channels and an x-shaped telescopic mechanical framework,enabling dynamic adjustment of inter-unit spacing(1 mm-3 mm)through a microcontroller-driven motor.By modulating the spacing between adjacent channels,the phase gradient is precisely controlled,allowing continuous focal shift from 50 mm to 300 mm along the x-axis at 7500 Hz.Broadband focusing is also discussed in the range6800 Hz-8100 Hz,with transmission coefficients exceeding 0.5,ensuring high efficiency and robust performance.Experimental results align closely with simulations,validating the design's effectiveness and adaptability.Unlike conventional programmable metamaterials requiring multi-dimensional parameter optimization,this approach simplifies real-time control through single-axis mechanical adjustment,significantly reducing operational complexity.Due to the advantages of broadband focusing,simple control mode,real-time monitoring,and so on,the device may have extensive applications in the fields of acoustic imaging,nondestructive testing,ultrasound medical treatment,etc.展开更多
Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aber...Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aberrations and pressure attenuation;these can distort and shift the acoustic focus,thus hindering the efficiency of tFUS therapy.To achieve effective treatments,phased array transducers combined with aberration correction algorithms are commonly implemented.The present report aims to provide a comprehensive review of the current methods used for tFUS phase aberration correction.We first searched the PubMed and Web of Science databases for studies on phase aberration correction algorithms,identifying 54 articles for review.Relevant information,including the principles of algorithms and refocusing performances,were then extracted from the selected articles.The phase correction algorithms involved two main steps:acoustic field estimation and transmitted pulse adjustment.Our review identified key benchmarks for evaluating the effectiveness of these algorithms,each of which was used in at least three studies.These benchmarks included pressure and intensity,positioning error,focal region size,peak sidelobe ratio,and computational efficiency.Algorithm performances varied under different benchmarks,thus highlighting the importance of application-specific algorithm selection for achieving optimal tFUS therapy outcomes.The present review provides a thorough overview and comparison of various phase correction algorithms,and may offer valuable guidance to tFUS researchers when selecting appropriate phase correction algorithms for specific applications.展开更多
Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found im...Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications.展开更多
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations....A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared.展开更多
Computational simulations on structurally different detonation generator are carried out to study the phenomena,the mechanism and the gas dynamics characteristics of flame implosion and shock wave focusing.Two-dimensi...Computational simulations on structurally different detonation generator are carried out to study the phenomena,the mechanism and the gas dynamics characteristics of flame implosion and shock wave focusing.Two-dimensional axisymmetric and unsteady Navier-Stokes equations are numerically solved and detailed chemical reaction kinetics of hydrogen/air mixture is used.The simulation results show that the laminar flame generated by low energy spark in the jet flame burner is accelerated under the narrow channel,the jet flame impinging on the axis strengthens shock wave and the shock wave enhances flame acceleration.Under the function of multiple shock waves and flame,a number of hot spots appear between the wave and the surface.The spots enlarge rapidly,thus forming an over-drive detonation with high pressure,and then declining to stable detonation.Through calculation and analysis,the length of detonation initiation and stable detonation are obtained,thus providing the useful information for further experimental investigations.展开更多
The focusing tomography is presented to reconstruct 3 dimensional irradiance distribution. A 3 dimensional luminous body could be considered as the combination of many 2 dimensional parallel luminous sections. Focu...The focusing tomography is presented to reconstruct 3 dimensional irradiance distribution. A 3 dimensional luminous body could be considered as the combination of many 2 dimensional parallel luminous sections. Focus on these discrete sections respectively by a single camera, a group of images would be captured to form governing equations of irradiance. After inversion procedure, the irradiance distribution of different sections could be decoded. In this experimentation two lightbulbs are used to simulate two luminous sections. Reasonable results demonstrate that this technique could be a useful method in irradiance reconstruction after further development.展开更多
Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the curr...Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes.展开更多
The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equa...The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equations, 2003,19(3):397-401) are corrected. By translating the system to be considered into the Lienard type and by using some related properties, we obtain several theorems with suitable conditions coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions improve the results given in Suo and Yue's paper mentioned above.展开更多
In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitud...In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.展开更多
基金the National Basic Research Program (973) (2007CB31407)the International S&T Cooperation Program of China (2006DFA53410)
文摘Rare earth permanent magnets Sm(Co, Fe, Cu, Zr)z with outstanding performance and high-temperature thermal stability were fabricated. Optimized by Fe content and process, Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5 magnet with B1〉0.75 T and Hci〉1300 kA/m at 300 ℃ can be obtained. According to the performance data of Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5, the magnetic field along central axis Bz in periodic permanent magnet (PPM) focusing system was simulated using electromagnetic field analysis software Maxwell 2D/3D. The Bz exhibited typical cosine curve along central axis, and the peak value of Bz was high enough to meet the demand of PPM focusing system at room temperature even at 200±20 ℃. Additionally, a kind of simple cooling structure for PPM focusing system was designed by setting cooling pipe between polepieces. Simulated results showed that smooth cosine curve of Bz was successfully achieved with good control of the thickness of cooling pipe.
基金financially supported by the National Natural Science Foundation of China (No. 61001120)
文摘In this study, finite element analysis based on an Ansoft Maxwell software was used to reveal the temperature stability of a magnet ring and the equivalent structural periodic permanent-magnet(PPM) focusing system. It is found that with the temperature increasing, the decrease rate of magnetic induction peak(Bz)maxof single magnet ring is greater than that of remanence Brof magnet in the range from room temperature to 200 °C, however,the PPM focusing system do have the same temperature characteristics of permanent-magnet materials. It indicates that the magnetic temperature properties of the PPM system can be effectively controlled by adjusting the temperature properties of the magnets. Moreover, the higher permeability of the magnets indicates the less Hcb, giving rise to lower magnetic induction peak (Bz)′max: Finally, it should be noted that the magnetic orientation deviation angle θ(/15°) of permanent magnets has little effect on the focusing magnetic field of the PPM system at different temperatures and the temperature stability. The obtained results are beneficial to the design and selection of permanent magnets for PPM focusing system.
文摘The effect of plasma and charged particle interaction with spacecraft in a low Earth orbit(LEO)environment leads to ion focusing and the formation of an ion void in the downstream region as a result of charging.Simulations and investigations using a fixed potential imposed on the spacecraft showed the nonsignificance of geophysical parameter changes to ion focusing.Variation of the temperature ratio(T_(r))contributed only to local ion focusing and manifested as two-ion streamers dispersed at the upper and lower edges of the spacecraft-the outermost layers of the satellite structure at the top and bottom,respectively.A simulation involving changing the ambient plasma density(N_(p))also showed the formation of local ion focusing,in which ions were more concentrated as the density increased.Furthermore,auroral electron density(N_(ae))variation had no clear impact on ion focusing,as indicated by static two-ion structures in the wake field.However,variation of the object potential(ϕ)strongly affected ion focusing formation,leading to distortion of the initial ion void region behind the spacecraft.The formation of ion focusing in this study was subject to the electric field produced by the object potential and the ambipolar electric field resulting from plasma expansion in the downstream region.
基金supported by the Fundamental Research Funds for the Central Universities of China (2010LKSX07)the Science Foundation of China University of Mining and Technology (0K4066)
文摘In this paper, we study a mathematical model of electron beam focusing system. We prove the existence of periodic solutions to the model using homotopy method.
基金the National Key Research and Development Program(Grant No.2019YFC1906100)the National Natural Science Foundation of China(Grant Nos.11974067 and 12074054)+1 种基金the Natural Science Foundation Project of CQ CSTC(cstc2019jcyj-msxmX0145,cstc2019jcyj-bshX0042,and cstc2019jcyj-msxmX0828)the Sharing Fund of Chongqing University’s Large-scale Equipment.
文摘Benefiting from the induced image charge on film surface,the nanoparticle aggregating on metal exhibits interesting optical properties.In this work,a linear metal nanoparticle trimer on metal film system has been investigated to explore the novel optical phenomenon.Both the electric field and surface charge distributions demonstrate the light is focused on film greatly by the nanoparticles at two sides,which could be strongly modulated by the wavelength of incident light.And the influence of nanoparticle in middle on this light focusing ability has also been studied here,which is explained by the plasmon hybridization theory.Our finding about light focusing in nanoparticle aggregating on metal film not only enlarges the novel phenomenon of surface plasmon but also has great application prospect in the field of surface-enhanced spectra,surface catalysis,solar cells,water splitting,etc.
基金supported by the National Natural Science Foundation of China(Grants U22A2008,12404484,12464016,and 62405219)the Double First Class Joint Special Key Project of Yunnan Science and Technology Department and Yunnan University(Grant 202401BF070001-012)Sichuan Provincial Science and Technology Support Program(Grant 25QNJJ2419).
文摘Dynamically tunable terahertz(THz)beam focusing plays a critical role in emerging applications including reconfigurable imaging,localized spectral analysis,and micro-machining.Conventional methods,however,frequently employ complex wavefront modulators and external control algorithms,resulting in increased system footprint and limited tuning efficiency.In this work,we present an all-silicon mechanically rotatable cascaded metasurface capable of dynamic THz beam focusing.By independently adjusting the relative rotation angles between the two metasurface layers,real-time repositioning of the focal spot is achieved for orthogonal circular polarization channels.The proposed design facilitates polarization-division multiplexing without requiring external algorithms or active materials while preserving high focusing efficiency and beam quality across a predefined focal plane.Numerical simulations reveal a quasi-linear shift of the focal position with the rotation angle,with stable focusing efficiency and full-width at half-maximum observed in both polarization channels.This strategy offers an efficient and reliable approach to dynamic wavefront control for compact,reconfigurable THz imaging,sensing,and communication systems.
基金financial support from the National Key R&D Program of China(No.2022YFE0204100)the National Natural Science Foundation of China(Nos.U23B20152 and 52402479)。
文摘Hall thrusters with large height-radius ratio,owing to their unique advantages in compactness,lightweight,and high performance,have progressively emerged as a preferred choice for diverse space propulsion applications in the future.However,the amplification of the annular effect in structures with a large height-radius ratio poses a practical problem of plume over-focusing,which seriously restricts the further improvement of Hall thruster performance and the extension of its life.In this study,the formation mechanism of over-focused plume is deeply investigated,and it is ascertained that an intensified radial electric field directed towards the inner wall within the channel serves as a key contributing factor.This phenomenon is fundamentally attributed to structural characteristics of large height-radius ratio that induce pronounced inward inclination of field lines within strong magnetic field zone.Based on this,the design concept of focused magnetic field is proposed,wherein straight magnetic field lines are established within the strong magnetic field zone to generate a quasi-axial accelerating electric field.Simultaneously,the symmetrical magnetic field inside the channel ensures ionization concentration near the channel center,thereby achieving optimal matching between the ionization zone and accelerating field.Experimental results demonstrate that employing a focused magnetic field significantly reduces the divergence half-angle of the plume and yields an excellently barrel-shaped focusing plume morphology in HEP-1350PM.Consequently,the total efficiency of the thruster surpasses 60%,while erosion belt on the inner wall is shortened by nearly 50%.These advancements effectively enhance thruster performance and prolong its operational lifespan.This study can not only resolve practical problems associated with plume over-focusing,but also provide a fundamental guiding principle for magnetic field design of Hall thrusters.
基金the National Natural Science Foundation of China(52276026).
文摘This study utilizes a visualization nozzle and spray experimental platform to experimentally investigate the flow focusing/blurring nozzle.It is found that the working mode of the nozzle transitions from flow focusing to flow transition and eventually to flow blurring as the gas flow rate increases or the tube hole distance decreases.Conversely,an increase in liquid flow rate only facilitates the transition from flow focusing to flow transition.Changes in the gas/liquid flow rate or tube hole distance influence the gas shear effect and the gas inertial impact effect inside the nozzle,which in turn alters the working mode.An increase in gas flow rate results in a shift of the droplet size distribution towards smaller particle sizes in the flow blurring mode,whereas an increase in liquid flow rate produces the opposite effect.Notably,the impact of the gas flow rate on these changes is more pronounced than that of the liquid flow rate.
基金supported by the National Grand Instrument Project(Grant No.2019YFF01014402)the National Key Research and Development Program of China(Grant No.2024YFF0726304)+2 种基金the Guangdong High Level Innovation Research Institute(Grant No.2021B0909050006)the National Natural Science Foundation of China(Grant No.12205008)W.Ma acknowledges support from the National Science Fund for Distinguished Young Scholars(Grant No.12225501)。
文摘Ultra-intense electromagnetic fields exceeding 10^(23)W∕cm^(2)are enabling breakthroughs in compact laser-driven particle accelerators and revealing new quantum electrodynamics(QED)phenomena.However,conventional laser-focusing methods face considerable engineering challenges and require substantial costs.Focusing schemes utilizing plasma optics can produce sub-micrometer focus spots beyond the diffraction limit and substantially enhance the peak intensity;however,owing to significant energy dissipation,they may fail to simultaneously increase the laser fluence.To address these challenges,we propose a focusing scheme employing a near-critical-density hollow plasma fiber(HPF)that utilizes graded refractive index dynamics to boost both laser peak intensity and fluence at the same time.Three-dimensional particle-in-cell simulations demonstrate the HPF’s capability to focus a 4.5-μm-diameter Gaussian beam to a sub-diffraction-limited 0.6-μm-diameter spot.The peak intensity and laser fluence can be enhanced by factors of 22 and 10,respectively,marking a substantial improvement over existing plasma-based focusing schemes.Furthermore,the proposed scheme exhibits wide-range parameter adaptation and high robustness,making it suitable for direct implementation in PW-class ultra-intense laser experiments.
基金Project supported by the National Natural Science Foundation of China(Grant No.12404531)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant No.23KJB140011)。
文摘Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing.However,elastic coding lenses(ECLs)still suffer from low focusing performance,thickness comparable to wavelength,and frequency sensitivity.Here,we consider both the structural and material properties of the coding unit,thus realizing further compression of the thickness of the ECL.We chose the simplest ECL,which consists of only two encoding units.The coding unit 0 is a straight structure constructed using a carbon fiber reinforced composite material,and the coding unit 1 is a zigzag structure constructed using an aluminum material,and the thickness of the ECL constructed using them is only 1/8 of the wavelength.Based on the theoretical design,the arrangement of coding units is further optimized using genetic algorithms,which significantly improves the focusing performance of the lens at different focus and frequencies.This study provides a more effective way to control vibration and noise in advanced structures.
基金supported by the National Natural Science Foundation of China(Grant No.12374416)。
文摘Adjustable or programmable metamaterials offer versatile functions,while the complex multi-dimensional regulation increases workload,and hinders their applications in practical scenarios.To address these challenges,we present a mechanically programmable acoustic metamaterial for real-time focal tuning via one-dimensional phase-gradient modulation in this paper.The device integrates a phase gradient structure with concave cavity channels and an x-shaped telescopic mechanical framework,enabling dynamic adjustment of inter-unit spacing(1 mm-3 mm)through a microcontroller-driven motor.By modulating the spacing between adjacent channels,the phase gradient is precisely controlled,allowing continuous focal shift from 50 mm to 300 mm along the x-axis at 7500 Hz.Broadband focusing is also discussed in the range6800 Hz-8100 Hz,with transmission coefficients exceeding 0.5,ensuring high efficiency and robust performance.Experimental results align closely with simulations,validating the design's effectiveness and adaptability.Unlike conventional programmable metamaterials requiring multi-dimensional parameter optimization,this approach simplifies real-time control through single-axis mechanical adjustment,significantly reducing operational complexity.Due to the advantages of broadband focusing,simple control mode,real-time monitoring,and so on,the device may have extensive applications in the fields of acoustic imaging,nondestructive testing,ultrasound medical treatment,etc.
基金supported by Start-Up Grant From ShanghaiTech University,2021F0209-000-09Natural Science Foundation of Shanghai Municipality,23ZR1442000。
文摘Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aberrations and pressure attenuation;these can distort and shift the acoustic focus,thus hindering the efficiency of tFUS therapy.To achieve effective treatments,phased array transducers combined with aberration correction algorithms are commonly implemented.The present report aims to provide a comprehensive review of the current methods used for tFUS phase aberration correction.We first searched the PubMed and Web of Science databases for studies on phase aberration correction algorithms,identifying 54 articles for review.Relevant information,including the principles of algorithms and refocusing performances,were then extracted from the selected articles.The phase correction algorithms involved two main steps:acoustic field estimation and transmitted pulse adjustment.Our review identified key benchmarks for evaluating the effectiveness of these algorithms,each of which was used in at least three studies.These benchmarks included pressure and intensity,positioning error,focal region size,peak sidelobe ratio,and computational efficiency.Algorithm performances varied under different benchmarks,thus highlighting the importance of application-specific algorithm selection for achieving optimal tFUS therapy outcomes.The present review provides a thorough overview and comparison of various phase correction algorithms,and may offer valuable guidance to tFUS researchers when selecting appropriate phase correction algorithms for specific applications.
文摘Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications.
基金Supported by the National Natural Science Foundation of China(50976072,51106099,10902070)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50501)the Science Foundation for the Excellent Youth Scholar of Higher Education of Shanghai(slg09003)~~
文摘A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared.
文摘Computational simulations on structurally different detonation generator are carried out to study the phenomena,the mechanism and the gas dynamics characteristics of flame implosion and shock wave focusing.Two-dimensional axisymmetric and unsteady Navier-Stokes equations are numerically solved and detailed chemical reaction kinetics of hydrogen/air mixture is used.The simulation results show that the laminar flame generated by low energy spark in the jet flame burner is accelerated under the narrow channel,the jet flame impinging on the axis strengthens shock wave and the shock wave enhances flame acceleration.Under the function of multiple shock waves and flame,a number of hot spots appear between the wave and the surface.The spots enlarge rapidly,thus forming an over-drive detonation with high pressure,and then declining to stable detonation.Through calculation and analysis,the length of detonation initiation and stable detonation are obtained,thus providing the useful information for further experimental investigations.
文摘The focusing tomography is presented to reconstruct 3 dimensional irradiance distribution. A 3 dimensional luminous body could be considered as the combination of many 2 dimensional parallel luminous sections. Focus on these discrete sections respectively by a single camera, a group of images would be captured to form governing equations of irradiance. After inversion procedure, the irradiance distribution of different sections could be decoded. In this experimentation two lightbulbs are used to simulate two luminous sections. Reasonable results demonstrate that this technique could be a useful method in irradiance reconstruction after further development.
基金supported by Open Scientific Research Program of Military Logistics,No.BLB20J009(to YZhao).
文摘Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes.
文摘The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equations, 2003,19(3):397-401) are corrected. By translating the system to be considered into the Lienard type and by using some related properties, we obtain several theorems with suitable conditions coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions improve the results given in Suo and Yue's paper mentioned above.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603401)National Natural Science Foundation of China(Nos.12035010 and 12342501)+1 种基金Beijing Outstanding Young Scientist Program(No.JWZQ20240101006)the Tsinghua University Dushi Program.
文摘In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.