Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found im...Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications.展开更多
Analytical propagation formulas are derived for partially coherent controllable dark-hollow beams (CDHBs) through a thin lens based on the generalized Huygens-Fresnel integral. The expressions of the position for ma...Analytical propagation formulas are derived for partially coherent controllable dark-hollow beams (CDHBs) through a thin lens based on the generalized Huygens-Fresnel integral. The expressions of the position for maximum irradiance on-axis and the relative focal shift are evaluated by the analytical propagation formulas. Our numerical results show that both the relative focal shift and the effective beam width of focused partially coherent CDHBs are mainly determined by the initial transverse coherence width 6g and the Fresnel number Nw, which are also affected by the changes of both the dark-size adjusting parameter p and the order N of CDHBs.展开更多
We theoretically demonstrate electrically controlled light focusing using a tunable metasurface employing thin film lithium niobate(TFLN).The designed metasurface features a high-quality factor guided-mode resonance w...We theoretically demonstrate electrically controlled light focusing using a tunable metasurface employing thin film lithium niobate(TFLN).The designed metasurface features a high-quality factor guided-mode resonance with an electrically controllable resonant wavelength,resulting in a high extinction ratio of transmittance at the operational wavelength by changing the applied voltage.A reconfigurable one-dimensional Fresnel zone plate with a focusing efficiency of around 15%has been realized through spatial modulation of transmitted light intensity,whose focal position can be electrically tunable in both longitudinal and lateral directions.Our approach reveals the great potential of metasurfaces using TFLN for electrically controlled light focusing.展开更多
The generation of tunably focused light at remote locations is a critical photonic functionality for a wide range of applications.Here,we present a novel concept in the emerging field of Metafibers that achieves,for t...The generation of tunably focused light at remote locations is a critical photonic functionality for a wide range of applications.Here,we present a novel concept in the emerging field of Metafibers that achieves,for the first time,fast,alignment-free,fiber-integrated spatial focus control in a monolithic arrangement.This is enabled by 3D nanoprinted intensity-sensitive phase-only on-fiber holograms,which establish a direct correlation between the intensity distribution in the hologram plane and the focus position.Precise adjustment to the relative power between the modes of a dual-core fiber generates a power-controlled interference pattern within the hologram,enabling controlled and dynamic focus shifts.This study addresses all relevant aspects,including computational optimization,advanced 3D nanoprinting,and tailored fiber fabrication.Experimental results supported by simulations validate the feasibility and efficiency of this monolithic Metafiber platform,which enables fast focus modulation and has transformative potential in optical manipulation,high-speed laser micromachining,telecommunications,and minimally invasive surgery.展开更多
文摘Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications.
基金Supported by the National Natural Science Foundation of China under Grant No 61201193
文摘Analytical propagation formulas are derived for partially coherent controllable dark-hollow beams (CDHBs) through a thin lens based on the generalized Huygens-Fresnel integral. The expressions of the position for maximum irradiance on-axis and the relative focal shift are evaluated by the analytical propagation formulas. Our numerical results show that both the relative focal shift and the effective beam width of focused partially coherent CDHBs are mainly determined by the initial transverse coherence width 6g and the Fresnel number Nw, which are also affected by the changes of both the dark-size adjusting parameter p and the order N of CDHBs.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1400601 and 2022YFA1404501)the National Natural Science Foundation for Distinguished Young Scholars(No.11925403)+1 种基金the National Natural Science Foundation of China(Nos.12122406,12192253,12274237,12274239,U22A20258)the Natural Science Foundation of Tianjin(Nos.22JCYBJC01350,22JCZDJC00400,22JCYBJC00800)。
文摘We theoretically demonstrate electrically controlled light focusing using a tunable metasurface employing thin film lithium niobate(TFLN).The designed metasurface features a high-quality factor guided-mode resonance with an electrically controllable resonant wavelength,resulting in a high extinction ratio of transmittance at the operational wavelength by changing the applied voltage.A reconfigurable one-dimensional Fresnel zone plate with a focusing efficiency of around 15%has been realized through spatial modulation of transmitted light intensity,whose focal position can be electrically tunable in both longitudinal and lateral directions.Our approach reveals the great potential of metasurfaces using TFLN for electrically controlled light focusing.
基金German Research Foundation(DFG)via the grants SCHM2655/21-1,SCHM2655/23-1,QI 140/2-1。
文摘The generation of tunably focused light at remote locations is a critical photonic functionality for a wide range of applications.Here,we present a novel concept in the emerging field of Metafibers that achieves,for the first time,fast,alignment-free,fiber-integrated spatial focus control in a monolithic arrangement.This is enabled by 3D nanoprinted intensity-sensitive phase-only on-fiber holograms,which establish a direct correlation between the intensity distribution in the hologram plane and the focus position.Precise adjustment to the relative power between the modes of a dual-core fiber generates a power-controlled interference pattern within the hologram,enabling controlled and dynamic focus shifts.This study addresses all relevant aspects,including computational optimization,advanced 3D nanoprinting,and tailored fiber fabrication.Experimental results supported by simulations validate the feasibility and efficiency of this monolithic Metafiber platform,which enables fast focus modulation and has transformative potential in optical manipulation,high-speed laser micromachining,telecommunications,and minimally invasive surgery.