Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to...Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.展开更多
Techniques for manipulating nanodroplets lie at the core of numerous miniaturized systems in chemical and biological research endeavors.In this study,we introduce a versatile methodology for calculating the acoustic v...Techniques for manipulating nanodroplets lie at the core of numerous miniaturized systems in chemical and biological research endeavors.In this study,we introduce a versatile methodology for calculating the acoustic vortex field,integrating hybrid wave equation principles with ray acoustics.This approach demonstrates remarkable consistency between simulated results and experimental observations.Importantly,both theoretical analysis and experimental validation confirm that particles whose diameters match the wavelength(Mie particles)can be effectively trapped within a focused acoustic vortex field,rotating in circular trajectories centered at the vortex center.This research significantly expands the scope of acoustic vortex manipulation for larger particles and introduces a novel implementation strategy with potential applications in targeted drug delivery for clinical adjuvant therapy.展开更多
Background:Platinum can cause chemotherapy-related cognitive impairment.Low-intensity focused ultrasound(LIFUS)is a promising noninvasive physical stimulation method with a unique advantage in neurological rehabilitat...Background:Platinum can cause chemotherapy-related cognitive impairment.Low-intensity focused ultrasound(LIFUS)is a promising noninvasive physical stimulation method with a unique advantage in neurological rehabilitation.We aimed to investigate whether LIFUS can alleviate cisplatin-induced cognitive impairment in rats and explore the related neuropatho-logical mechanisms.Methods:After confirming the target position for LIFUS treatment in 18 rats,64 rats were randomly divided into four groups:control,model,sham,and LIFUS groups.Before and after LIFUS treatment,detailed biological behavioral assessments and magnetic resonance imaging were performed.Finally,the rats were euthanized,and relevant histopathological and molecular biological experiments were conducted and analyzed.Results:In the Morris water maze,the model group showed fewer platform crossings(1.250.93 vs.5.691.58),a longer escape latency(41.6536.55 s vs.6.382.11 s),and a lower novel object recognition index(29.7711.83 vs.83.695.67)than the control group.LIFUS treatment improved these metrics,with more platform crossings(3.130.34),a higher recognition index(65.588.71),and a shorter escape latency(6.452.27 s).Longitudinal analysis of the LIFUS group further confirmed these improvements.Neuroimaging revealed significant differences in diffusion tensor imaging metrics of specific brain regions pre-and post-LIFUS.Moreover,neuropathology showed higher dendritic spine density,less myelin loss,fewer apoptotic cells,more synapses,and less mitochondrial autophagy after LIFUS treatment.The neuroimaging indicators were correlated with behavioral improvements,highlighting the potential of LIFUS for alleviating cognitive impairment(as demonstrated through imaging and analysis).Our investigation of the molecular biological mechanisms revealed distinct protein expression patterns in the hippocampus and its subregions.In the model group,glial fibrillary acidic protein(GFAP)and ionized calcium-binding adaptor molecule 1(IBA1)expression levels were elevated across the hippocampus,whereas neuronal nuclei(NeuN)expression was reduced.Subregional analysis revealed higher GFAP and IBA1 and lower NeuN,especially in the dentate gyrus subregion.Moreover,positive cell areas were larger in the cornu ammonis(CA)1,CA2,CA3,and dentate gyrus regions.In the CA2 and CA3,significant differences among the groups were observed in GFAP-positive cell counts and areas,and there were variations in NeuN expression.Conclusions:Our results suggest that LIFUS can reverse cisplatin-induced cognitive impairments.The neuroimaging findings were consistent with the behavioral and histological results and suggest a neuropathological basis that supports further research into the clinical applications of LIFUS.Furthermore,LIFUS appeared to enhance the plasticity of neuronal synapses in the rat hippocampus and reduce hippocampal inflammation.These findings highlight the clinical potential of LIFUS as an effective,noninvasive therapeutic strategy and monitoring tool for chemotherapy-induced cognitive deficits.展开更多
Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aber...Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aberrations and pressure attenuation;these can distort and shift the acoustic focus,thus hindering the efficiency of tFUS therapy.To achieve effective treatments,phased array transducers combined with aberration correction algorithms are commonly implemented.The present report aims to provide a comprehensive review of the current methods used for tFUS phase aberration correction.We first searched the PubMed and Web of Science databases for studies on phase aberration correction algorithms,identifying 54 articles for review.Relevant information,including the principles of algorithms and refocusing performances,were then extracted from the selected articles.The phase correction algorithms involved two main steps:acoustic field estimation and transmitted pulse adjustment.Our review identified key benchmarks for evaluating the effectiveness of these algorithms,each of which was used in at least three studies.These benchmarks included pressure and intensity,positioning error,focal region size,peak sidelobe ratio,and computational efficiency.Algorithm performances varied under different benchmarks,thus highlighting the importance of application-specific algorithm selection for achieving optimal tFUS therapy outcomes.The present review provides a thorough overview and comparison of various phase correction algorithms,and may offer valuable guidance to tFUS researchers when selecting appropriate phase correction algorithms for specific applications.展开更多
Focused ultrasound(FUS)therapy generates sufficient heat for medical interventions like tumor ablation by concentrating energy at the focal point.The complex viscoelastic properties of biological tissues pose challeng...Focused ultrasound(FUS)therapy generates sufficient heat for medical interventions like tumor ablation by concentrating energy at the focal point.The complex viscoelastic properties of biological tissues pose challenges in balancing focusing precision and penetration depth,impacting the safety of surrounding tissues and treatment efficacy.This study develops an acoustic-solid-thermal coupling computational model to elucidate the dynamic mechanical response and energy dissipation mechanisms of soft tissue during FUS thermal therapy using a hyper-viscoelastic constitutive model.Results indicate that the high compressibility and low shear resistance of biological tissues result in a unique shear dissipation mechanism.Energy dissipation efficiency per area is indirectly influenced by load frequency via its effect on the dynamic shear modulus and is directly proportional to load amplitude.Focusing precision,represented by the focal zone width,is inversely controlled by frequency via wavelength.A mathematical model for evaluating temperature rise efficiency is proposed,and an optimal frequency for efficient FUS thermal therapy in brain-like soft materials is identified.This research elucidates the link between viscoelastic tissue behavior and FUS treatment outcomes,offering insights for optimizing FUS applications in various medical fields.展开更多
This paper explores the phenomenon of fluid resonance occurring within a narrow gap between a vessel and a vertical wharf, taking ships berthing in front of a gravity wharf as the research background. Using the open-s...This paper explores the phenomenon of fluid resonance occurring within a narrow gap between a vessel and a vertical wharf, taking ships berthing in front of a gravity wharf as the research background. Using the open-source software Open FOAM~?, a two-dimensional viscous-flow numerical wave flume was developed to simulate the fluid resonant motions induced by transient focused wave groups with different spectral peak periods and wave amplitudes. The results indicate that for all the incident focused wave amplitudes considered, the amplitudes of the free surface elevation in the gap, horizontal wave force and moment all exhibit a bimodal variation trend with increasing spectral peak period. The peak values of the above amplitude-period curve appear near the resonant period of the first and second harmonic components of the free surface elevation. However, the variation in the vertical wave force versus the spectral peak period presents different patterns. In addition, the first-to fourth-order harmonic components in the wave surface and forces are further examined via the four-phase combination method. The results show that the first-to secondorder harmonic components play a dominant role in the overall amplitude.展开更多
It has long been noticed that focus is able to influence the truth-conditions of coun-terfactual conditionals.Namely,stressing different parts of a counterfactual leads to distinct interpretations.However,existing the...It has long been noticed that focus is able to influence the truth-conditions of coun-terfactual conditionals.Namely,stressing different parts of a counterfactual leads to distinct interpretations.However,existing theories,such as those by von Finte1 and Rooth,fail to ad-equately account for this phenomenon.In this paper,I exposit the drawbacks of these theories and then propose a novel account,ie.the Good Question-Answer(GQA)view.The GQA account posits that focus triggers question-answer pairs,and pragmatic pressures conceming the adequacy of such question answer pairs in contexts are able to affect the truth-conditions of counterfactuals.I also argue for the GQA account by appeal to its theoretical virtues.展开更多
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
Prostate cancer (PCa) is a significant health concern globally, necessitating effective treatment options. Typical treatment methods for early stage, particularly localized PCa, encompass radical procedures, such as r...Prostate cancer (PCa) is a significant health concern globally, necessitating effective treatment options. Typical treatment methods for early stage, particularly localized PCa, encompass radical procedures, such as radical prostatectomy (RP) and radiotherapy (RT), and nonradical focal therapy (FT). FT is a focused approach mainly used for treating small lesions limited to a specific zone of the prostate. Its objective is to achieve cancer control when minimizing damage to benign tissue. High-intensity focused ultrasound (HIFU) is one of the most used modalities in FT for the management of PCa. The progress in HIFU technology showcases continuous advancements, offering clinicians a variety of strategies to cater to diverse patient requirements. The advancements include the development of transrectal and transurethral HIFU machines that offer enhanced treatment distances, magnetic resonance imaging (MRI) fusion capabilities, real-time monitoring, and precise ablation. These improvements contribute to increased treatment effectiveness and better outcomes for patients. This narrative review aims to summarize the use of HIFU technology and its evolution, offering diverse options to clinicians, and explores the safety, effectiveness, and quality of different HIFU strategies, such as whole-gland ablation, hemigland ablation, and focal ablation. We conclude that nonwhole-gland HIFU offers similar cancer control with better short-term functional outcomes and fewer complications compared to whole-gland ablation. Combining HIFU with transurethral resection of the prostate (TURP) improves urinary function and reduces catheterization time. Focal ablation and hemigland ablation show promise in achieving cancer control when preserving continence and potency.展开更多
The safety and effectiveness of magnetic resonance-guided focused ultrasound thalamotomy has been broadly established and validated for the treatment of essential tremor.In 2018,the first magnetic resonance-guided foc...The safety and effectiveness of magnetic resonance-guided focused ultrasound thalamotomy has been broadly established and validated for the treatment of essential tremor.In 2018,the first magnetic resonance-guided focused ultrasound system in Chinese mainland was installed at the First Medical Center of the PLA General Hospital.This prospective,single center,open-label,single-arm study was part of a worldwide prospective multicenter clinical trial(ClinicalTrials.gov Identifier:NCT03253991)conducted to confirm the safety and efficacy of magnetic resonance-guided focused ultrasound for treating essential tremor in the local population.From 2019 to 2020,10 patients with medication refractory essential tremor were recruited into this open-label,single arm study.The treatment efficacy was determined using the Clinical Rating Scale for Tremor.Safety was evaluated according to the incidence and severity of adverse events.All of the subjects underwent a unilateral thalamotomy targeting the ventral intermediate nucleus.At the baseline assessment,the estimated marginal mean of the Clinical Rating Scale for Tremor total score was 58.3±3.6,and this improved after treatment to 23.1±6.4 at a 12-month follow-up assessment.A total of 50 adverse events were recorded,and 2 were defined as serious.The most common intraoperative adverse events were nausea and headache.The most frequent postoperative adverse events were paresthesia and equilibrium disorder.Most of the adverse events were mild and usually disappeared within a few days.Our findings suggest that magnetic resonance-guided focused ultrasound for the treatment of essential tremor is effective,with a good safety profile,for patients in Chinese mainland.展开更多
Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(C...Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.展开更多
Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simul...Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.展开更多
This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circ...This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.展开更多
Ectopic pregnancy(EP)could be defined as any embryo that got implanted in any site rather than the endometrial cavity.Lately,different types of EP were reportedly managed by high-intensity focused ultrasound(HIFU).We ...Ectopic pregnancy(EP)could be defined as any embryo that got implanted in any site rather than the endometrial cavity.Lately,different types of EP were reportedly managed by high-intensity focused ultrasound(HIFU).We aimed to pool all available data in a systematic review without meta-analysis and investigate the efficacy and safety tendencies of HIFU among different types of EP.We applied our comprehensive terms in Google Scholar,PubMed,Scopus,Ovid,and PubMed Central databases from their inception until September 23.Retrieved references were gathered using EndNote in which we omitted the duplicates and exported the record for screening.Data regarding character-istics,safety and efficacy outcomes,and baseline information of the enrolled population were extracted.The eligible case reports were assessed using a tool by Murad and colleagues,while the quality of the included cohorts was appraised using the NIH tool.We retrieved 6637 studies,which were scruti-nized by titles and abstracts.We scrutinized the full texts of 36 studies and ultimately included a total of 17 studies.All studies were conducted in China,and on different types of ectopic pregnancy including tubal,cervical,intra-mural,caesarian scar,and corneal ectopic pregnancy.The mean age of enrolled patients was 33.03 years,and we pooled a total sample of 853 patients.The follow-up period varied widely among the included studies,ranging from 1.3 months to up to 69 months.Normal menstruation recurred after a mean of 35 days,as reported by nine studies.Most of the included studies reported normalβ-HCG after around 30-40 days.Twelve studies with 757 patients reported a cumulative incidence of 179 cases of abdominal pain after HIFU.Neither of the enrolled patients reportedly complained of skin burn after HIFU.We suggested managing EP patients with HIFU,especially when seeking further conceiving.High-quality randomized controlled trials are required to draw a stronger level of evidence.展开更多
We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical ...We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.展开更多
Piezoelectric ultrasonic transducers have shown great potential in biomedical applications due to their high acoustic-to-electric conversion efficiency and large power capacity.The focusing technique enables the trans...Piezoelectric ultrasonic transducers have shown great potential in biomedical applications due to their high acoustic-to-electric conversion efficiency and large power capacity.The focusing technique enables the transducer to produce an extremely narrow beam,greatly improving the resolution and sensitivity.In this work,we summarize the fundamental properties and biological effects of the ultrasound field,aiming to establish a correlation between device design and application.Focusing techniques for piezoelectric transducers are highlighted,including material selection and fabrication methods,which determine the final performance of piezoelectric transducers.Numerous examples,from ultrasound imaging,neuromodulation,tumor ablation to ultrasonic wireless energy transfer,are summarized to highlight the great promise of biomedical applications.Finally,the challenges and opportunities of focused ultrasound transducers are presented.The aim of this review is to bridge the gap between focused ultrasound systems and biomedical applications.展开更多
The noninvasive ablation of pancreatic cancer with high intensity focused ultrasound(HIFU) energy is received increasingly widespread interest. With rapidly temperature rise to cytotoxic levels within the focal volume...The noninvasive ablation of pancreatic cancer with high intensity focused ultrasound(HIFU) energy is received increasingly widespread interest. With rapidly temperature rise to cytotoxic levels within the focal volume of ultrasound beams, HIFU can selectively ablate a targeted lesion of the pancreas without any damage to surrounding or overlying tissues. Preliminary studies suggest that this approach is technical safe and feasible, and can be used alone or in combination with systemic chemotherapy for the treatment of patients with locally advanced pancreatic cancer. It can effectively alleviate cancer-related abdominal pain, and may confer an additional survival benefit with few significant complications. This review provides a brief overview of HIFU, describes current clinical applications, summarizes characteristics of continuous and pulsed HIFU, and discusses future applications and challenges in the treatment of pancreatic cancer.展开更多
Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is an emerging, non-invasive hyperthermia technology which can be used for the treatment of benign and malignant tumours, in conjunction with intracranial ...Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is an emerging, non-invasive hyperthermia technology which can be used for the treatment of benign and malignant tumours, in conjunction with intracranial neurological diseases. To treat different indications, it is often necessary to design special focused ultrasound devices and treatment plans, which poses great challenges and results in substantial costs during software development. This article introduces a general software architecture that can be applied to three different focused ultrasound devices for the treatment of uterine fibroids, breast fibroids, and pain palliation of bone metastases, respectively, and can be integrated with GE Discovery or Signa MRI scanners and Xingaoyi BroadScan MRI scanners. Finally, the proposed software architecture was shown to possess desirable universality and safety through various tests and animal experimental studies.展开更多
Background: The unaesthetic appearance of the female intimate area (vulva, “mound of venus” and perianal region) is a triggering factor of negative psychological responses, embarrassment, anxiety and insecurity in m...Background: The unaesthetic appearance of the female intimate area (vulva, “mound of venus” and perianal region) is a triggering factor of negative psychological responses, embarrassment, anxiety and insecurity in many women. Using rejuvenating equipment for vaginal structure or for the intimate area as a whole is already widespread in the literature, and High-Intensity Focused Ultrasound (HIFU) has proven to be very effective in the clinical practice of many professionals. This study, therefore, aims to describe the fundamentals and applicability that guide the use of HIFU in vulvar rejuvenation. Materials and Methods: Exploratory research was carried out, presented in a narrative review, to highlight the action of HIFU in female intimate rejuvenation. The review explored scientific articles published and available in the following databases: MEDLINE (Medical Literature Analysis and Retrieval System Online), PubMed (National Library of Medicine), SCIELO (Scientific Electronic Library Online), and LILACS (Latin Literature American and the Caribbean in Health Sciences). In addition, some clinical findings obtained through a retrospective analysis of medical records were added to describe the authors’ clinical experience in the use of Focused Ultrasound (HIFU) for vulvar rejuvenation. Results: We verified that the tissues of female external genitalia respond very well to the stimuli of the focused sound waves of the HIFU, being able to produce immediate and lasting results through isolated applications or in association with intradermotherapy or other therapeutic resources. Conclusion: We conclude that using High Intensity Focused Ultrasound aimed at vulvar rejuvenation is safely indicated and assures excellent aesthetic results at the end of the treatment because similarly to other treatment techniques, the thermal stimuli of HIFU are also able to produce an excellent therapeutic response in the dermal tissue of the female intimate area, promoting intense neocollagenesis and generating great aesthetic improvement.展开更多
AIM:To analyze whether high-intensity focused ultrasound(HIFU) ablation is an effective bridging therapy for patients with hepatocellular carcinoma(HCC).METHODS:From January 2007 to December 2010,49 consecutive HCC pa...AIM:To analyze whether high-intensity focused ultrasound(HIFU) ablation is an effective bridging therapy for patients with hepatocellular carcinoma(HCC).METHODS:From January 2007 to December 2010,49 consecutive HCC patients were listed for liver transplantation(UCSF criteria).The median waiting time for transplantation was 9.5 mo.Twenty-nine patients received transarterial chemoembolization(TACE) as a bringing therapy and 16 patients received no treatment before transplantation.Five patients received HIFU ablation as a bridging therapy.Another five patients with the same tumor staging(within the UCSF criteria) who received HIFU ablation but not on the transplant list were included for comparison.Patients were comparable in terms of Child-Pugh and model for end-stage liver disease scores,tumor size and number,and cause of cirrhosis.RESULTS:The HIFU group and TACE group showed no difference in terms of tumor size and tumor number.One patient in the HIFU group and no patient in the TACE group had gross ascites.The median hospital stay was 1 d(range,1-21 d) in the TACE group and two days(range,1-9 d) in the HIFU group(P < 0.000).No HIFU-related complication occurred.In the HIFU group,nine patients(90%) had complete response and one patient(10%) had partial response to the treatment.In the TACE group,only one patient(3%) had response to the treatment while 14 patients(48%) had stable disease and 14 patients(48%) had progressive disease(P = 0.00).Seven patients in the TACE group and no patient in the HIFU group dropped out from the transplant waiting list(P = 0.559).CONCLUSION:HIFU ablation is safe and effective in the treatment of HCC for patients with advanced cirrhosis.It may reduce the drop-out rate of liver transplant candidate.展开更多
基金supported by the Fundamental Research Funds for the Central Universities,Nos.G2021KY05107,G2021KY05101the National Natural Science Foundation of China,Nos.32071316,32211530049+1 种基金the Natural Science Foundation of Shaanxi Province,No.2022-JM482the Education and Teaching Reform Funds for the Central Universities,No.23GZ230102(all to LL and HH).
文摘Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.
基金Project supported by the National Key R&D Program of China(Grant No.2023YFE0201900)。
文摘Techniques for manipulating nanodroplets lie at the core of numerous miniaturized systems in chemical and biological research endeavors.In this study,we introduce a versatile methodology for calculating the acoustic vortex field,integrating hybrid wave equation principles with ray acoustics.This approach demonstrates remarkable consistency between simulated results and experimental observations.Importantly,both theoretical analysis and experimental validation confirm that particles whose diameters match the wavelength(Mie particles)can be effectively trapped within a focused acoustic vortex field,rotating in circular trajectories centered at the vortex center.This research significantly expands the scope of acoustic vortex manipulation for larger particles and introduces a novel implementation strategy with potential applications in targeted drug delivery for clinical adjuvant therapy.
基金supported by the National Natural Science Foundation of China(82171908 and 82102015)the General Project of the Nanjing Medical Science and Technology Development Program(YKK21075)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515140030).
文摘Background:Platinum can cause chemotherapy-related cognitive impairment.Low-intensity focused ultrasound(LIFUS)is a promising noninvasive physical stimulation method with a unique advantage in neurological rehabilitation.We aimed to investigate whether LIFUS can alleviate cisplatin-induced cognitive impairment in rats and explore the related neuropatho-logical mechanisms.Methods:After confirming the target position for LIFUS treatment in 18 rats,64 rats were randomly divided into four groups:control,model,sham,and LIFUS groups.Before and after LIFUS treatment,detailed biological behavioral assessments and magnetic resonance imaging were performed.Finally,the rats were euthanized,and relevant histopathological and molecular biological experiments were conducted and analyzed.Results:In the Morris water maze,the model group showed fewer platform crossings(1.250.93 vs.5.691.58),a longer escape latency(41.6536.55 s vs.6.382.11 s),and a lower novel object recognition index(29.7711.83 vs.83.695.67)than the control group.LIFUS treatment improved these metrics,with more platform crossings(3.130.34),a higher recognition index(65.588.71),and a shorter escape latency(6.452.27 s).Longitudinal analysis of the LIFUS group further confirmed these improvements.Neuroimaging revealed significant differences in diffusion tensor imaging metrics of specific brain regions pre-and post-LIFUS.Moreover,neuropathology showed higher dendritic spine density,less myelin loss,fewer apoptotic cells,more synapses,and less mitochondrial autophagy after LIFUS treatment.The neuroimaging indicators were correlated with behavioral improvements,highlighting the potential of LIFUS for alleviating cognitive impairment(as demonstrated through imaging and analysis).Our investigation of the molecular biological mechanisms revealed distinct protein expression patterns in the hippocampus and its subregions.In the model group,glial fibrillary acidic protein(GFAP)and ionized calcium-binding adaptor molecule 1(IBA1)expression levels were elevated across the hippocampus,whereas neuronal nuclei(NeuN)expression was reduced.Subregional analysis revealed higher GFAP and IBA1 and lower NeuN,especially in the dentate gyrus subregion.Moreover,positive cell areas were larger in the cornu ammonis(CA)1,CA2,CA3,and dentate gyrus regions.In the CA2 and CA3,significant differences among the groups were observed in GFAP-positive cell counts and areas,and there were variations in NeuN expression.Conclusions:Our results suggest that LIFUS can reverse cisplatin-induced cognitive impairments.The neuroimaging findings were consistent with the behavioral and histological results and suggest a neuropathological basis that supports further research into the clinical applications of LIFUS.Furthermore,LIFUS appeared to enhance the plasticity of neuronal synapses in the rat hippocampus and reduce hippocampal inflammation.These findings highlight the clinical potential of LIFUS as an effective,noninvasive therapeutic strategy and monitoring tool for chemotherapy-induced cognitive deficits.
基金supported by Start-Up Grant From ShanghaiTech University,2021F0209-000-09Natural Science Foundation of Shanghai Municipality,23ZR1442000。
文摘Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aberrations and pressure attenuation;these can distort and shift the acoustic focus,thus hindering the efficiency of tFUS therapy.To achieve effective treatments,phased array transducers combined with aberration correction algorithms are commonly implemented.The present report aims to provide a comprehensive review of the current methods used for tFUS phase aberration correction.We first searched the PubMed and Web of Science databases for studies on phase aberration correction algorithms,identifying 54 articles for review.Relevant information,including the principles of algorithms and refocusing performances,were then extracted from the selected articles.The phase correction algorithms involved two main steps:acoustic field estimation and transmitted pulse adjustment.Our review identified key benchmarks for evaluating the effectiveness of these algorithms,each of which was used in at least three studies.These benchmarks included pressure and intensity,positioning error,focal region size,peak sidelobe ratio,and computational efficiency.Algorithm performances varied under different benchmarks,thus highlighting the importance of application-specific algorithm selection for achieving optimal tFUS therapy outcomes.The present review provides a thorough overview and comparison of various phase correction algorithms,and may offer valuable guidance to tFUS researchers when selecting appropriate phase correction algorithms for specific applications.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11972205,11921002,11972210,and 12302096)the National Key Research Development Program of China(Grant No.2020-JCJQ-ZD-254).
文摘Focused ultrasound(FUS)therapy generates sufficient heat for medical interventions like tumor ablation by concentrating energy at the focal point.The complex viscoelastic properties of biological tissues pose challenges in balancing focusing precision and penetration depth,impacting the safety of surrounding tissues and treatment efficacy.This study develops an acoustic-solid-thermal coupling computational model to elucidate the dynamic mechanical response and energy dissipation mechanisms of soft tissue during FUS thermal therapy using a hyper-viscoelastic constitutive model.Results indicate that the high compressibility and low shear resistance of biological tissues result in a unique shear dissipation mechanism.Energy dissipation efficiency per area is indirectly influenced by load frequency via its effect on the dynamic shear modulus and is directly proportional to load amplitude.Focusing precision,represented by the focal zone width,is inversely controlled by frequency via wavelength.A mathematical model for evaluating temperature rise efficiency is proposed,and an optimal frequency for efficient FUS thermal therapy in brain-like soft materials is identified.This research elucidates the link between viscoelastic tissue behavior and FUS treatment outcomes,offering insights for optimizing FUS applications in various medical fields.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52371277)the State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation (Tianjin University)(Grant No. HESS-2323)+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No. KYCX24_4071)the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515010890)the Open foundation of Key Laboratory of Port.Waterway&Sedimentation Engineering (Grant No. Yk224001-1)。
文摘This paper explores the phenomenon of fluid resonance occurring within a narrow gap between a vessel and a vertical wharf, taking ships berthing in front of a gravity wharf as the research background. Using the open-source software Open FOAM~?, a two-dimensional viscous-flow numerical wave flume was developed to simulate the fluid resonant motions induced by transient focused wave groups with different spectral peak periods and wave amplitudes. The results indicate that for all the incident focused wave amplitudes considered, the amplitudes of the free surface elevation in the gap, horizontal wave force and moment all exhibit a bimodal variation trend with increasing spectral peak period. The peak values of the above amplitude-period curve appear near the resonant period of the first and second harmonic components of the free surface elevation. However, the variation in the vertical wave force versus the spectral peak period presents different patterns. In addition, the first-to fourth-order harmonic components in the wave surface and forces are further examined via the four-phase combination method. The results show that the first-to secondorder harmonic components play a dominant role in the overall amplitude.
基金supported by the Major Program of National Social Science Foundation of China(No.23&ZD240)。
文摘It has long been noticed that focus is able to influence the truth-conditions of coun-terfactual conditionals.Namely,stressing different parts of a counterfactual leads to distinct interpretations.However,existing theories,such as those by von Finte1 and Rooth,fail to ad-equately account for this phenomenon.In this paper,I exposit the drawbacks of these theories and then propose a novel account,ie.the Good Question-Answer(GQA)view.The GQA account posits that focus triggers question-answer pairs,and pragmatic pressures conceming the adequacy of such question answer pairs in contexts are able to affect the truth-conditions of counterfactuals.I also argue for the GQA account by appeal to its theoretical virtues.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.
文摘Prostate cancer (PCa) is a significant health concern globally, necessitating effective treatment options. Typical treatment methods for early stage, particularly localized PCa, encompass radical procedures, such as radical prostatectomy (RP) and radiotherapy (RT), and nonradical focal therapy (FT). FT is a focused approach mainly used for treating small lesions limited to a specific zone of the prostate. Its objective is to achieve cancer control when minimizing damage to benign tissue. High-intensity focused ultrasound (HIFU) is one of the most used modalities in FT for the management of PCa. The progress in HIFU technology showcases continuous advancements, offering clinicians a variety of strategies to cater to diverse patient requirements. The advancements include the development of transrectal and transurethral HIFU machines that offer enhanced treatment distances, magnetic resonance imaging (MRI) fusion capabilities, real-time monitoring, and precise ablation. These improvements contribute to increased treatment effectiveness and better outcomes for patients. This narrative review aims to summarize the use of HIFU technology and its evolution, offering diverse options to clinicians, and explores the safety, effectiveness, and quality of different HIFU strategies, such as whole-gland ablation, hemigland ablation, and focal ablation. We conclude that nonwhole-gland HIFU offers similar cancer control with better short-term functional outcomes and fewer complications compared to whole-gland ablation. Combining HIFU with transurethral resection of the prostate (TURP) improves urinary function and reduces catheterization time. Focal ablation and hemigland ablation show promise in achieving cancer control when preserving continence and potency.
基金sponsored by Insightec Co.Ltd.(Israel)China National Clinical Research Center for Geriatrics,No.NCRCG-PLAGH-2019005 (to LP)
文摘The safety and effectiveness of magnetic resonance-guided focused ultrasound thalamotomy has been broadly established and validated for the treatment of essential tremor.In 2018,the first magnetic resonance-guided focused ultrasound system in Chinese mainland was installed at the First Medical Center of the PLA General Hospital.This prospective,single center,open-label,single-arm study was part of a worldwide prospective multicenter clinical trial(ClinicalTrials.gov Identifier:NCT03253991)conducted to confirm the safety and efficacy of magnetic resonance-guided focused ultrasound for treating essential tremor in the local population.From 2019 to 2020,10 patients with medication refractory essential tremor were recruited into this open-label,single arm study.The treatment efficacy was determined using the Clinical Rating Scale for Tremor.Safety was evaluated according to the incidence and severity of adverse events.All of the subjects underwent a unilateral thalamotomy targeting the ventral intermediate nucleus.At the baseline assessment,the estimated marginal mean of the Clinical Rating Scale for Tremor total score was 58.3±3.6,and this improved after treatment to 23.1±6.4 at a 12-month follow-up assessment.A total of 50 adverse events were recorded,and 2 were defined as serious.The most common intraoperative adverse events were nausea and headache.The most frequent postoperative adverse events were paresthesia and equilibrium disorder.Most of the adverse events were mild and usually disappeared within a few days.Our findings suggest that magnetic resonance-guided focused ultrasound for the treatment of essential tremor is effective,with a good safety profile,for patients in Chinese mainland.
基金supported by the National Natural Science Foundation of China (Grant No.12104016)the National Key Research and Development Program of China (Grant No.2020YFF01014706)。
文摘Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
基金The National Natural Science Foundation under contract Nos 52171247,51779022,52071057,and 51709054.
文摘Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291)the Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006)+2 种基金the Natural Sciences Foundation of Shanghai (Grant No.11ZR1441300)the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098)the Jiangsu Qing Lan Project for their sponsorship。
文摘This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.
文摘Ectopic pregnancy(EP)could be defined as any embryo that got implanted in any site rather than the endometrial cavity.Lately,different types of EP were reportedly managed by high-intensity focused ultrasound(HIFU).We aimed to pool all available data in a systematic review without meta-analysis and investigate the efficacy and safety tendencies of HIFU among different types of EP.We applied our comprehensive terms in Google Scholar,PubMed,Scopus,Ovid,and PubMed Central databases from their inception until September 23.Retrieved references were gathered using EndNote in which we omitted the duplicates and exported the record for screening.Data regarding character-istics,safety and efficacy outcomes,and baseline information of the enrolled population were extracted.The eligible case reports were assessed using a tool by Murad and colleagues,while the quality of the included cohorts was appraised using the NIH tool.We retrieved 6637 studies,which were scruti-nized by titles and abstracts.We scrutinized the full texts of 36 studies and ultimately included a total of 17 studies.All studies were conducted in China,and on different types of ectopic pregnancy including tubal,cervical,intra-mural,caesarian scar,and corneal ectopic pregnancy.The mean age of enrolled patients was 33.03 years,and we pooled a total sample of 853 patients.The follow-up period varied widely among the included studies,ranging from 1.3 months to up to 69 months.Normal menstruation recurred after a mean of 35 days,as reported by nine studies.Most of the included studies reported normalβ-HCG after around 30-40 days.Twelve studies with 757 patients reported a cumulative incidence of 179 cases of abdominal pain after HIFU.Neither of the enrolled patients reportedly complained of skin burn after HIFU.We suggested managing EP patients with HIFU,especially when seeking further conceiving.High-quality randomized controlled trials are required to draw a stronger level of evidence.
基金This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications(Grant No.CXXZD2023080)the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)+1 种基金the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222133)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.
基金National Natural Science Foundation of China(12072189,82171011)Shanghai Jiao Tong University‘Deep Blue Program’Fund(Grant No.SL2103)+1 种基金Project of Biobank(No.YBKB202117)from Shanghai Ninth People’s HospitalShanghai Jiao Tong University School of Medicine and Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(No.6142905223704)。
文摘Piezoelectric ultrasonic transducers have shown great potential in biomedical applications due to their high acoustic-to-electric conversion efficiency and large power capacity.The focusing technique enables the transducer to produce an extremely narrow beam,greatly improving the resolution and sensitivity.In this work,we summarize the fundamental properties and biological effects of the ultrasound field,aiming to establish a correlation between device design and application.Focusing techniques for piezoelectric transducers are highlighted,including material selection and fabrication methods,which determine the final performance of piezoelectric transducers.Numerous examples,from ultrasound imaging,neuromodulation,tumor ablation to ultrasonic wireless energy transfer,are summarized to highlight the great promise of biomedical applications.Finally,the challenges and opportunities of focused ultrasound transducers are presented.The aim of this review is to bridge the gap between focused ultrasound systems and biomedical applications.
文摘The noninvasive ablation of pancreatic cancer with high intensity focused ultrasound(HIFU) energy is received increasingly widespread interest. With rapidly temperature rise to cytotoxic levels within the focal volume of ultrasound beams, HIFU can selectively ablate a targeted lesion of the pancreas without any damage to surrounding or overlying tissues. Preliminary studies suggest that this approach is technical safe and feasible, and can be used alone or in combination with systemic chemotherapy for the treatment of patients with locally advanced pancreatic cancer. It can effectively alleviate cancer-related abdominal pain, and may confer an additional survival benefit with few significant complications. This review provides a brief overview of HIFU, describes current clinical applications, summarizes characteristics of continuous and pulsed HIFU, and discusses future applications and challenges in the treatment of pancreatic cancer.
基金the National Natural Science Foundation of China (Nos. 81727806 and 11774231)the National Key Research and Development Program of Ministry of Science and Technology (No. 2017YFC0108900)+1 种基金the Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support—Gainers from Shanghai Jiao Tong University School of Medicine (No. 20152230)the Emerging Frontier Technology Joint Research Program of Shanghai Shen-Kang Hospital Development Center (No. SHDC2017127)。
文摘Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is an emerging, non-invasive hyperthermia technology which can be used for the treatment of benign and malignant tumours, in conjunction with intracranial neurological diseases. To treat different indications, it is often necessary to design special focused ultrasound devices and treatment plans, which poses great challenges and results in substantial costs during software development. This article introduces a general software architecture that can be applied to three different focused ultrasound devices for the treatment of uterine fibroids, breast fibroids, and pain palliation of bone metastases, respectively, and can be integrated with GE Discovery or Signa MRI scanners and Xingaoyi BroadScan MRI scanners. Finally, the proposed software architecture was shown to possess desirable universality and safety through various tests and animal experimental studies.
文摘Background: The unaesthetic appearance of the female intimate area (vulva, “mound of venus” and perianal region) is a triggering factor of negative psychological responses, embarrassment, anxiety and insecurity in many women. Using rejuvenating equipment for vaginal structure or for the intimate area as a whole is already widespread in the literature, and High-Intensity Focused Ultrasound (HIFU) has proven to be very effective in the clinical practice of many professionals. This study, therefore, aims to describe the fundamentals and applicability that guide the use of HIFU in vulvar rejuvenation. Materials and Methods: Exploratory research was carried out, presented in a narrative review, to highlight the action of HIFU in female intimate rejuvenation. The review explored scientific articles published and available in the following databases: MEDLINE (Medical Literature Analysis and Retrieval System Online), PubMed (National Library of Medicine), SCIELO (Scientific Electronic Library Online), and LILACS (Latin Literature American and the Caribbean in Health Sciences). In addition, some clinical findings obtained through a retrospective analysis of medical records were added to describe the authors’ clinical experience in the use of Focused Ultrasound (HIFU) for vulvar rejuvenation. Results: We verified that the tissues of female external genitalia respond very well to the stimuli of the focused sound waves of the HIFU, being able to produce immediate and lasting results through isolated applications or in association with intradermotherapy or other therapeutic resources. Conclusion: We conclude that using High Intensity Focused Ultrasound aimed at vulvar rejuvenation is safely indicated and assures excellent aesthetic results at the end of the treatment because similarly to other treatment techniques, the thermal stimuli of HIFU are also able to produce an excellent therapeutic response in the dermal tissue of the female intimate area, promoting intense neocollagenesis and generating great aesthetic improvement.
文摘AIM:To analyze whether high-intensity focused ultrasound(HIFU) ablation is an effective bridging therapy for patients with hepatocellular carcinoma(HCC).METHODS:From January 2007 to December 2010,49 consecutive HCC patients were listed for liver transplantation(UCSF criteria).The median waiting time for transplantation was 9.5 mo.Twenty-nine patients received transarterial chemoembolization(TACE) as a bringing therapy and 16 patients received no treatment before transplantation.Five patients received HIFU ablation as a bridging therapy.Another five patients with the same tumor staging(within the UCSF criteria) who received HIFU ablation but not on the transplant list were included for comparison.Patients were comparable in terms of Child-Pugh and model for end-stage liver disease scores,tumor size and number,and cause of cirrhosis.RESULTS:The HIFU group and TACE group showed no difference in terms of tumor size and tumor number.One patient in the HIFU group and no patient in the TACE group had gross ascites.The median hospital stay was 1 d(range,1-21 d) in the TACE group and two days(range,1-9 d) in the HIFU group(P < 0.000).No HIFU-related complication occurred.In the HIFU group,nine patients(90%) had complete response and one patient(10%) had partial response to the treatment.In the TACE group,only one patient(3%) had response to the treatment while 14 patients(48%) had stable disease and 14 patients(48%) had progressive disease(P = 0.00).Seven patients in the TACE group and no patient in the HIFU group dropped out from the transplant waiting list(P = 0.559).CONCLUSION:HIFU ablation is safe and effective in the treatment of HCC for patients with advanced cirrhosis.It may reduce the drop-out rate of liver transplant candidate.