The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation a...The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We also find that the radial particle density evolvement is of uniformity at the beam’s centre as long as appropriate parameters are chosen.展开更多
This paper studies the Kapchinsky-Vladimirsky (K-V) beam through a triangle periodic-focusing magnetic field by using the particle-core model. The beam halo-chaos is found, and an idea of Gauss function controller i...This paper studies the Kapchinsky-Vladimirsky (K-V) beam through a triangle periodic-focusing magnetic field by using the particle-core model. The beam halo-chaos is found, and an idea of Gauss function controller is proposed based on the strategy of controlling the halo-chaos. It performs multiparticle simulation to control the halo by using the Gauss function control method. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively, and that the radial particle density is uniform at the centre of the beam as long as the control method and appropriate parameter are chosen.展开更多
The K-V beam through an axisymmetric uniform-focusing channel is studied using the particle-core model. The beam halo-chaos is found, and a sample function controller is proposed based on mechanism of halo formation a...The K-V beam through an axisymmetric uniform-focusing channel is studied using the particle-core model. The beam halo-chaos is found, and a sample function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. We perform multiparticle simulation to control the halo by using the sample function controller. The numerical results show that our control method is effective. We also find that the radial ion density changes when the ion beam is in the channel: not only can the halo-chaos and its regeneration be eliminated by using the sample function control method, but also the density uniformity can be found at the beam's centre as long as an appropriate control method is chosen.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10247005)the Natural Science Foundation of the Anhui Higher Education Bureau (Grant No. KJ2007B187)the Scientific Research Foundation of China University of Mining and Technology for the Young (Grant No. OK060119).
文摘The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We also find that the radial particle density evolvement is of uniformity at the beam’s centre as long as appropriate parameters are chosen.
基金supported by the National Natural Science Foundation of China (Grant No 10247005)the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No KJ2007B187)the Scientific Research Foundation of China University of Mining and Technology for the Young (Grant No OK060119)
文摘This paper studies the Kapchinsky-Vladimirsky (K-V) beam through a triangle periodic-focusing magnetic field by using the particle-core model. The beam halo-chaos is found, and an idea of Gauss function controller is proposed based on the strategy of controlling the halo-chaos. It performs multiparticle simulation to control the halo by using the Gauss function control method. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively, and that the radial particle density is uniform at the centre of the beam as long as the control method and appropriate parameter are chosen.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10247005 and 70071047) and the Scientific Research Foundation of China University of Mining and Technology for the Young (Grant No 2005A037).
文摘The K-V beam through an axisymmetric uniform-focusing channel is studied using the particle-core model. The beam halo-chaos is found, and a sample function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. We perform multiparticle simulation to control the halo by using the sample function controller. The numerical results show that our control method is effective. We also find that the radial ion density changes when the ion beam is in the channel: not only can the halo-chaos and its regeneration be eliminated by using the sample function control method, but also the density uniformity can be found at the beam's centre as long as an appropriate control method is chosen.