期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进UNet++模型的脑肿瘤图像分割算法 被引量:1
1
作者 付豪 张振利 陈源 《河北大学学报(自然科学版)》 北大核心 2025年第4期398-407,共10页
针对计算机辅助脑肿瘤图像边缘分割模糊、分割精度不高的问题,提出了一种改进的嵌套UN-et++脑肿瘤图像分割算法.首先,设计MCAM(Mishcoordinateattentionmodule)模块代替原UNet++的特征提取部分,嵌入坐标注意力机制(coordinateattention,... 针对计算机辅助脑肿瘤图像边缘分割模糊、分割精度不高的问题,提出了一种改进的嵌套UN-et++脑肿瘤图像分割算法.首先,设计MCAM(Mishcoordinateattentionmodule)模块代替原UNet++的特征提取部分,嵌入坐标注意力机制(coordinateattention,CA)关注不同方向上的位置信息以增强特征提取能力,使用Mish激活函数替换ReLU激活函数防止出现梯度消失,提高脑肿瘤图像分割精度和泛化能力;其次,在特征提取后加入SME(squeezeMishexcitation)模块进行挤压和激励,扩大特征图的感受野以增强对肿瘤特征的学习能力;最后,利用焦点Dice损失函数关注模糊样本的分割,从而改善脑肿瘤图像边缘分割模糊的问题.提出的算法在Figshare数据集上进行仿真实验,实验结果表明,在均值交并比(MIoU)、类别平均像素准确率(MPA)、骰子系数(Dice)和豪斯多夫距离(Hausdorffdistance,HD)评估指标上分别达到83.26%、81.91%、86.45%和18.57mm.与3DUNet、Swin-UNet、DD-UNet、LRAE-UNet和AI-UNet等算法进行对比,证明提出的算法分割效果更优. 展开更多
关键词 脑肿瘤图像分割 UNet++ MCAM CA注意力机制 Mish激活函数 SME 焦点dice损失函数
在线阅读 下载PDF
基于CBAM-Res_UNet电厂高压蒸汽泄漏检测研究 被引量:17
2
作者 彭道刚 刘薇薇 +1 位作者 戚尔江 胡捷 《电子测量与仪器学报》 CSCD 北大核心 2021年第12期206-214,共9页
发电厂高压蒸汽泄漏检测关乎电厂设备长期稳定运行。为了提高电厂高压蒸汽泄漏检测的准确性,解决泄漏区域的错分割和漏分割问题,提出基于CBAM-Res_UNet图像分割网络的电厂高压蒸汽泄漏检测算法,在UNet结构中加入ResNet的残差块residual_... 发电厂高压蒸汽泄漏检测关乎电厂设备长期稳定运行。为了提高电厂高压蒸汽泄漏检测的准确性,解决泄漏区域的错分割和漏分割问题,提出基于CBAM-Res_UNet图像分割网络的电厂高压蒸汽泄漏检测算法,在UNet结构中加入ResNet的残差块residual_block来获取泄漏图像更多的语义信息,并且融入CBAM,加强高压蒸汽泄漏图像区域特征的学习,网络再根据不同损失函数和评价标准对图像分割结果的影响,选择损失函数Focal Loss+Dice Loss和性能指标F1_score。通过在电厂高压蒸汽泄漏图像数据集上进行实验,CBAM-Res_UNet网络得到的F1_score值为0.985,实验结果表明,该网络可以更加完整的分割出蒸汽泄漏区域,对高压蒸汽泄漏图像多样性有较强的泛化能力。 展开更多
关键词 电厂高压蒸汽泄漏检测 CBAM-Res_UNet图像分割网络 损失函数focal loss+dice loss 性能指标F1_score
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部