期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进UNet++模型的脑肿瘤图像分割算法
被引量:
1
1
作者
付豪
张振利
陈源
《河北大学学报(自然科学版)》
北大核心
2025年第4期398-407,共10页
针对计算机辅助脑肿瘤图像边缘分割模糊、分割精度不高的问题,提出了一种改进的嵌套UN-et++脑肿瘤图像分割算法.首先,设计MCAM(Mishcoordinateattentionmodule)模块代替原UNet++的特征提取部分,嵌入坐标注意力机制(coordinateattention,...
针对计算机辅助脑肿瘤图像边缘分割模糊、分割精度不高的问题,提出了一种改进的嵌套UN-et++脑肿瘤图像分割算法.首先,设计MCAM(Mishcoordinateattentionmodule)模块代替原UNet++的特征提取部分,嵌入坐标注意力机制(coordinateattention,CA)关注不同方向上的位置信息以增强特征提取能力,使用Mish激活函数替换ReLU激活函数防止出现梯度消失,提高脑肿瘤图像分割精度和泛化能力;其次,在特征提取后加入SME(squeezeMishexcitation)模块进行挤压和激励,扩大特征图的感受野以增强对肿瘤特征的学习能力;最后,利用焦点Dice损失函数关注模糊样本的分割,从而改善脑肿瘤图像边缘分割模糊的问题.提出的算法在Figshare数据集上进行仿真实验,实验结果表明,在均值交并比(MIoU)、类别平均像素准确率(MPA)、骰子系数(Dice)和豪斯多夫距离(Hausdorffdistance,HD)评估指标上分别达到83.26%、81.91%、86.45%和18.57mm.与3DUNet、Swin-UNet、DD-UNet、LRAE-UNet和AI-UNet等算法进行对比,证明提出的算法分割效果更优.
展开更多
关键词
脑肿瘤图像分割
UNet++
MCAM
CA注意力机制
Mish激活函数
SME
焦点
dice
损失函数
在线阅读
下载PDF
职称材料
基于CBAM-Res_UNet电厂高压蒸汽泄漏检测研究
被引量:
17
2
作者
彭道刚
刘薇薇
+1 位作者
戚尔江
胡捷
《电子测量与仪器学报》
CSCD
北大核心
2021年第12期206-214,共9页
发电厂高压蒸汽泄漏检测关乎电厂设备长期稳定运行。为了提高电厂高压蒸汽泄漏检测的准确性,解决泄漏区域的错分割和漏分割问题,提出基于CBAM-Res_UNet图像分割网络的电厂高压蒸汽泄漏检测算法,在UNet结构中加入ResNet的残差块residual_...
发电厂高压蒸汽泄漏检测关乎电厂设备长期稳定运行。为了提高电厂高压蒸汽泄漏检测的准确性,解决泄漏区域的错分割和漏分割问题,提出基于CBAM-Res_UNet图像分割网络的电厂高压蒸汽泄漏检测算法,在UNet结构中加入ResNet的残差块residual_block来获取泄漏图像更多的语义信息,并且融入CBAM,加强高压蒸汽泄漏图像区域特征的学习,网络再根据不同损失函数和评价标准对图像分割结果的影响,选择损失函数Focal Loss+Dice Loss和性能指标F1_score。通过在电厂高压蒸汽泄漏图像数据集上进行实验,CBAM-Res_UNet网络得到的F1_score值为0.985,实验结果表明,该网络可以更加完整的分割出蒸汽泄漏区域,对高压蒸汽泄漏图像多样性有较强的泛化能力。
展开更多
关键词
电厂高压蒸汽泄漏检测
CBAM-Res_UNet图像分割网络
损失函数
focal
loss
+
dice
loss
性能指标F1_score
原文传递
题名
改进UNet++模型的脑肿瘤图像分割算法
被引量:
1
1
作者
付豪
张振利
陈源
机构
江西理工大学电气工程与自动化学院
出处
《河北大学学报(自然科学版)》
北大核心
2025年第4期398-407,共10页
基金
国家自然科学基金项目(62363013)。
文摘
针对计算机辅助脑肿瘤图像边缘分割模糊、分割精度不高的问题,提出了一种改进的嵌套UN-et++脑肿瘤图像分割算法.首先,设计MCAM(Mishcoordinateattentionmodule)模块代替原UNet++的特征提取部分,嵌入坐标注意力机制(coordinateattention,CA)关注不同方向上的位置信息以增强特征提取能力,使用Mish激活函数替换ReLU激活函数防止出现梯度消失,提高脑肿瘤图像分割精度和泛化能力;其次,在特征提取后加入SME(squeezeMishexcitation)模块进行挤压和激励,扩大特征图的感受野以增强对肿瘤特征的学习能力;最后,利用焦点Dice损失函数关注模糊样本的分割,从而改善脑肿瘤图像边缘分割模糊的问题.提出的算法在Figshare数据集上进行仿真实验,实验结果表明,在均值交并比(MIoU)、类别平均像素准确率(MPA)、骰子系数(Dice)和豪斯多夫距离(Hausdorffdistance,HD)评估指标上分别达到83.26%、81.91%、86.45%和18.57mm.与3DUNet、Swin-UNet、DD-UNet、LRAE-UNet和AI-UNet等算法进行对比,证明提出的算法分割效果更优.
关键词
脑肿瘤图像分割
UNet++
MCAM
CA注意力机制
Mish激活函数
SME
焦点
dice
损失函数
Keywords
brain tumor image segmentation
UNet++
MCAM
coordinate attention mechanism
Mish activation
function
SME
focal dice loss function
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于CBAM-Res_UNet电厂高压蒸汽泄漏检测研究
被引量:
17
2
作者
彭道刚
刘薇薇
戚尔江
胡捷
机构
上海电力大学自动化工程学院
宝山钢铁股份有限公司能源环保部电厂
出处
《电子测量与仪器学报》
CSCD
北大核心
2021年第12期206-214,共9页
基金
上海市“科技创新行动计划”高新技术领域项目(21511101800)资助。
文摘
发电厂高压蒸汽泄漏检测关乎电厂设备长期稳定运行。为了提高电厂高压蒸汽泄漏检测的准确性,解决泄漏区域的错分割和漏分割问题,提出基于CBAM-Res_UNet图像分割网络的电厂高压蒸汽泄漏检测算法,在UNet结构中加入ResNet的残差块residual_block来获取泄漏图像更多的语义信息,并且融入CBAM,加强高压蒸汽泄漏图像区域特征的学习,网络再根据不同损失函数和评价标准对图像分割结果的影响,选择损失函数Focal Loss+Dice Loss和性能指标F1_score。通过在电厂高压蒸汽泄漏图像数据集上进行实验,CBAM-Res_UNet网络得到的F1_score值为0.985,实验结果表明,该网络可以更加完整的分割出蒸汽泄漏区域,对高压蒸汽泄漏图像多样性有较强的泛化能力。
关键词
电厂高压蒸汽泄漏检测
CBAM-Res_UNet图像分割网络
损失函数
focal
loss
+
dice
loss
性能指标F1_score
Keywords
detection of high pressure steam leakage in power plant
CBAM-Res_UNet image segmentation network
loss
function
focal
loss
+
dice
loss
performance index F1_score
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
改进UNet++模型的脑肿瘤图像分割算法
付豪
张振利
陈源
《河北大学学报(自然科学版)》
北大核心
2025
1
在线阅读
下载PDF
职称材料
2
基于CBAM-Res_UNet电厂高压蒸汽泄漏检测研究
彭道刚
刘薇薇
戚尔江
胡捷
《电子测量与仪器学报》
CSCD
北大核心
2021
17
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部