In order to identify the mixing and segregation behaviors in a mineral processing operation, present study aimed on the hydrodynamics of solid–liquid fluidization. The study was carried out in a fluidization column w...In order to identify the mixing and segregation behaviors in a mineral processing operation, present study aimed on the hydrodynamics of solid–liquid fluidization. The study was carried out in a fluidization column with tapings at different height of the bed to collect the sample. The binary particles considered in this study are hematite(4800 kg/m3) and quartz(2600 kg/m3) at different size fractions in the range of average size 87×10^(-6)m to 400×10^(-6)m. It is observed that for various binary mixtures, both quartz and hematite particles share the equal composition by mass(50%) at a particular height of fluidized bed, referred as ‘‘locus point'' of mixing. Study indicates that the mixing zone volume will increase for a continuous fluidized bed plant operation. It is observed that the number of locus points varies from 1 to 3 signifying their dependency on the size ratios of binary mixture. Whenever, the difference in terminal velocity between quartz and hematite particles approaches to zero, mixing is enhanced.Further, the present study is extended to find the segregation index for the different size ratios of quartz and hematite particles. It is evident that depending on the size ratios, various regions such as complete segregation, partial mixing and complete mixing can be observed.展开更多
Although the gas-phase production of nanostructured solids has already been carried out in industry for decades, only in recentyears has research interest in this topic begun to increase. Nevertheless, despite the rem...Although the gas-phase production of nanostructured solids has already been carried out in industry for decades, only in recentyears has research interest in this topic begun to increase. Nevertheless, despite the remarkable scientific progress made recently, many long-established processes are still used in industry. Scientific advancements can potentially lead to the improvement of existing industrial processes, but also to the development of completely new routes. This paper aims to review state-of-the-art synthesis and processing technologies, as well as the recent developments in academic research. Flame reactors that produce inorganic nanoparticles on industrial- and lab-scales are described, alongside a detailed overview of the different systems used for the production of carbon nanotubes and graphene. We discuss the problems of agglomeration and mixing of nanoparticles, which are strongly related to synthesis and processing. Finally, we focus on two promising processing techniques, namely nanoparticle fluidization and atomic layer deposition.展开更多
SiO_(x)is commonly used in lithium-ion batteries because of its capacity and affordability,but it has issues with volume expansion and conductivity.Synthetic methods are crucial for achieving the desired microstructur...SiO_(x)is commonly used in lithium-ion batteries because of its capacity and affordability,but it has issues with volume expansion and conductivity.Synthetic methods are crucial for achieving the desired microstructure and material properties.This study introduces a new technique,fluidized bed granulation,to produce SiO_(x)@GNs composites.These composites have a core-shell structure with SiO_(x)particles coated in graphene sheets,and high-energy vibration is used to create a SiO_(x)-Fe structure on the surface.The graphene coating prevents volume expansion and enhances electron transfer.Real-time confocal imaging shows the charging and discharging process.Experiment results show that the SiO_(x)@GNs electrode has a lower expansion rate of 53.60%compared to 73.04%for the SiO electrode,indicating improved electrochemical properties with the graphene coating.After 100 cycles at 2 C,SiO_(x)@GNs demonstrate a reversible capacity of 1265.8 mA,h·g^(-1)and discharge capability at 7 C with a capacity of 1050 mA,h·g^(-1).The battery retains 90.21%of its capacity after 500 cycles at 0.5 C,showing potential as a LIB anode alternative with a unique structure for different energy storage materials.Fluidized bed granulation can aid in scaling up the use of SiO_(x)anodes in lithium-ion batteries.展开更多
Gas phase fluidized bed processes have been widely applied to polyethylene production.In these processes,the flow,mass transfer,and reaction rate on the microscale and macroscale are strongly coupled because of the mu...Gas phase fluidized bed processes have been widely applied to polyethylene production.In these processes,the flow,mass transfer,and reaction rate on the microscale and macroscale are strongly coupled because of the multiphase and multiscale nature of the fluidization system.Understanding mesoscale phenomena is therefore essential to the quantitative translation of the knowledge obtained from the microscale to the macroscale.This paper reviews the development of ethylene polymerization gas phase processes while focussing on studies regarding mesoscale phenomena.These include experimental characterizations,mathematical modelling and control strategies.Trends and future developments in this field are also discussed.展开更多
Particle transport phenomena in small-scale circulating fiuidized beds (CFB) can be simulated using the Euler-Euler, discrete element method, and Euler-Lagrange approaches. In this work, a hybrid Euler-Lagrange mode...Particle transport phenomena in small-scale circulating fiuidized beds (CFB) can be simulated using the Euler-Euler, discrete element method, and Euler-Lagrange approaches. In this work, a hybrid Euler-Lagrange model known as the dense discrete phase model (DDPM), which has common roots with the multiphase particle-in-cell model, was applied in simulating particle transport within a mid-sized experimental CFB facility. Implementation of the DDPM into the commercial ANSYS Fluent CFD package is relatively young in comparison with the granular Eulerian model. For that reason, validation of the DDPM approach against experimental data is still required and is addressed in this paper. Additional difficulties encountered in modeling fluidization processes are connected with long calculation times. To reduce times, the complete boiler models are simplified to include just the combustion chamber. Such simplifications introduce errors in the predicted solid distribution in the boiler. To investigate the conse- quences of model reduction, simulations were made using the simplified and complete pilot geometries and compared with experimental data. All simulations were performed using the ANSYSFLUENT 14.0 package. A set of user defined functions were used in the hybrid DDPM and Euler-Euler approaches to recirculate solid particles.展开更多
Liquid-solid fluidized beds are used in mineral processing industries to separate particles based on parti- cle size, density, and shape. Understanding the expanded fluidized bed is vital for accurately assessing its ...Liquid-solid fluidized beds are used in mineral processing industries to separate particles based on parti- cle size, density, and shape. Understanding the expanded fluidized bed is vital for accurately assessing its performance. Expansion characteristics of the fluidized bed were studied by performing several experi- ments with iron ore, chromite, quartz, and coal samples. Using water as liquid medium, experiments were conducted to study the effects of particle size, particle density, and superficial velocity on fluidized bed expansion. The experimental data were utilized to develop an empirical mathematical model based on dimensional analysis to estimate the expansion ratio of the fluidized bed in terms of particle character- istics, operating and design parameters. The predicted expansion ratio obtained from the mathematical model is in good agreement with the experimental data.展开更多
文摘In order to identify the mixing and segregation behaviors in a mineral processing operation, present study aimed on the hydrodynamics of solid–liquid fluidization. The study was carried out in a fluidization column with tapings at different height of the bed to collect the sample. The binary particles considered in this study are hematite(4800 kg/m3) and quartz(2600 kg/m3) at different size fractions in the range of average size 87×10^(-6)m to 400×10^(-6)m. It is observed that for various binary mixtures, both quartz and hematite particles share the equal composition by mass(50%) at a particular height of fluidized bed, referred as ‘‘locus point'' of mixing. Study indicates that the mixing zone volume will increase for a continuous fluidized bed plant operation. It is observed that the number of locus points varies from 1 to 3 signifying their dependency on the size ratios of binary mixture. Whenever, the difference in terminal velocity between quartz and hematite particles approaches to zero, mixing is enhanced.Further, the present study is extended to find the segregation index for the different size ratios of quartz and hematite particles. It is evident that depending on the size ratios, various regions such as complete segregation, partial mixing and complete mixing can be observed.
文摘Although the gas-phase production of nanostructured solids has already been carried out in industry for decades, only in recentyears has research interest in this topic begun to increase. Nevertheless, despite the remarkable scientific progress made recently, many long-established processes are still used in industry. Scientific advancements can potentially lead to the improvement of existing industrial processes, but also to the development of completely new routes. This paper aims to review state-of-the-art synthesis and processing technologies, as well as the recent developments in academic research. Flame reactors that produce inorganic nanoparticles on industrial- and lab-scales are described, alongside a detailed overview of the different systems used for the production of carbon nanotubes and graphene. We discuss the problems of agglomeration and mixing of nanoparticles, which are strongly related to synthesis and processing. Finally, we focus on two promising processing techniques, namely nanoparticle fluidization and atomic layer deposition.
基金supported by Guangdong Key R&D Program of China(2019B090908001)National Natural Science Foundation of China(U22B2069)+2 种基金Shanghai Rising Star Program(No.22QA1406400)National Key R&D Program of China(2022YFB3305400)Science and Technology lnnovation Action Plan of the Science and Technology Commission of Shanghai Municipality(No.23DZ1200800)。
文摘SiO_(x)is commonly used in lithium-ion batteries because of its capacity and affordability,but it has issues with volume expansion and conductivity.Synthetic methods are crucial for achieving the desired microstructure and material properties.This study introduces a new technique,fluidized bed granulation,to produce SiO_(x)@GNs composites.These composites have a core-shell structure with SiO_(x)particles coated in graphene sheets,and high-energy vibration is used to create a SiO_(x)-Fe structure on the surface.The graphene coating prevents volume expansion and enhances electron transfer.Real-time confocal imaging shows the charging and discharging process.Experiment results show that the SiO_(x)@GNs electrode has a lower expansion rate of 53.60%compared to 73.04%for the SiO electrode,indicating improved electrochemical properties with the graphene coating.After 100 cycles at 2 C,SiO_(x)@GNs demonstrate a reversible capacity of 1265.8 mA,h·g^(-1)and discharge capability at 7 C with a capacity of 1050 mA,h·g^(-1).The battery retains 90.21%of its capacity after 500 cycles at 0.5 C,showing potential as a LIB anode alternative with a unique structure for different energy storage materials.Fluidized bed granulation can aid in scaling up the use of SiO_(x)anodes in lithium-ion batteries.
基金This work was supported by the National Natural Science Foun-dation of China(Grant No.91434205)the National Science Fund for Distinguished Young(Grant No.21525627)the Natural Science Foundation of Zhejiang Province for Young(Grant No.LQ18B060001).
文摘Gas phase fluidized bed processes have been widely applied to polyethylene production.In these processes,the flow,mass transfer,and reaction rate on the microscale and macroscale are strongly coupled because of the multiphase and multiscale nature of the fluidization system.Understanding mesoscale phenomena is therefore essential to the quantitative translation of the knowledge obtained from the microscale to the macroscale.This paper reviews the development of ethylene polymerization gas phase processes while focussing on studies regarding mesoscale phenomena.These include experimental characterizations,mathematical modelling and control strategies.Trends and future developments in this field are also discussed.
基金supported by the National Center for Research and Development,within the confines of Research and Development Strategic Program Advanced Technologies for Energy Generation Project No.2 Oxy-combustion technology for PC and FBC boilers with CO_2 capture,Agreement No.SP/E/2/66420/10supported by the National Center for Research and Development as a research project development of coal gasification technology for high production of fuels and energy,CzTB 5.2
文摘Particle transport phenomena in small-scale circulating fiuidized beds (CFB) can be simulated using the Euler-Euler, discrete element method, and Euler-Lagrange approaches. In this work, a hybrid Euler-Lagrange model known as the dense discrete phase model (DDPM), which has common roots with the multiphase particle-in-cell model, was applied in simulating particle transport within a mid-sized experimental CFB facility. Implementation of the DDPM into the commercial ANSYS Fluent CFD package is relatively young in comparison with the granular Eulerian model. For that reason, validation of the DDPM approach against experimental data is still required and is addressed in this paper. Additional difficulties encountered in modeling fluidization processes are connected with long calculation times. To reduce times, the complete boiler models are simplified to include just the combustion chamber. Such simplifications introduce errors in the predicted solid distribution in the boiler. To investigate the conse- quences of model reduction, simulations were made using the simplified and complete pilot geometries and compared with experimental data. All simulations were performed using the ANSYSFLUENT 14.0 package. A set of user defined functions were used in the hybrid DDPM and Euler-Euler approaches to recirculate solid particles.
基金the financial support given by CSIRthrough a network project(NWP-31)to carry out this study
文摘Liquid-solid fluidized beds are used in mineral processing industries to separate particles based on parti- cle size, density, and shape. Understanding the expanded fluidized bed is vital for accurately assessing its performance. Expansion characteristics of the fluidized bed were studied by performing several experi- ments with iron ore, chromite, quartz, and coal samples. Using water as liquid medium, experiments were conducted to study the effects of particle size, particle density, and superficial velocity on fluidized bed expansion. The experimental data were utilized to develop an empirical mathematical model based on dimensional analysis to estimate the expansion ratio of the fluidized bed in terms of particle character- istics, operating and design parameters. The predicted expansion ratio obtained from the mathematical model is in good agreement with the experimental data.