Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remedi...Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.展开更多
Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m...Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.展开更多
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn...Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.展开更多
Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to induci...Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to inducing antibiotic-HMs combined pollution.Recently,frequent human activities have led to more prominent antibiotics-HMs combined contamination in agricultural soils,especially the production and spread of antibiotic resistance genes(ARGs),heavy metal resistance genes(MRGs),antibiotic resistant bacteria(ARB),and antibiotics-HMs complexes(AMCs),which seriously threaten soil ecology and human health.This review describes the main sources(Intrinsic and manmade sources),composite mechanisms(co-selective resistance,oxidative stress,and Joint toxicity mechanism),environmental fate and the potential risks(soil ecological and human health risks)of antibiotics and HMs in agricultural soils.Finally,the current effective source blocking,transmission control,and attenuation strategies are classified for discussion,such as the application of additives and barrier materials,as well as plant and animal remediation and bioremediation,etc.,pointing out that future research should focus on the whole chain process of“source-processterminal”,intending to provide a theoretical basis and decision-making reference for future research.展开更多
Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies...Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies.This study evaluated the feasibility of European Community Bureau of Reference(BCR)sequential extraction,Ca(NO_(3))_(2)extraction,and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime,magnesium hydroxide,corn stover biochar,and calcium dihydrogen phosphate.Moreover,the enriched isotope tracing technique(^(112)Cd and^(206)Pb)was employed to evaluate the aging process of newly introduced Cd and Pbwithin 56 days’incubation.Results demonstrated that extractable pools by BCR and Ca(NO_(3))_(2)extraction were little impacted by amendments and showed little correlation with soil pH.This is notable because soil pH is closely linked to metal availability,indicating these extraction methods may not adequately reflect metal availability.Conversely,water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH(Pearson’s r:-0.908 to-0.825,P<0.001),suggesting water extraction as a more sensitive approach.Furthermore,newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools.Additionally,water-soluble concentrations of essential metals were impacted by soil amendments,raising caution on their potential effects on plant growth.These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability,which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies.展开更多
Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing...Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Oxytetracycline(OTC)is used extensively in animal husbandry and enters the soil in different forms,causing severe environmental pollution.Previous studies have shown that the genus Pseudomonas can potentially degrade ...Oxytetracycline(OTC)is used extensively in animal husbandry and enters the soil in different forms,causing severe environmental pollution.Previous studies have shown that the genus Pseudomonas can potentially degrade antibiotics in the soil environment.Environmental conditions,such as the initial concentration of antibiotics,incubation temperature and others,have significant impacts on the activity of antibiotic-degrading bacteria.However,few reports have clarified the environmental impacts on the effectiveness of Pseudomonas spp.In the present study,we investigated the effects of different initial concentrations of OTC and incubation temperatures,as well as soil sterilization,on OTC degradation by Pseudomonas strain T4.We also focused on the microbial degradation pathways of OTC,and variations in both antibiotic resistance genes(ARGs)and microbial communities with T4 functioning under optimal conditions.The results showed that the most effective degradation occurred under an initial OTC concentration of 2.5 mg kg^(-1)at 30℃in unsterilized soil spiked with T4.These conditions yielded an OTC degradation rate of 69.53%within 63 days.The putative degradation pathways of OTC in the presence of T4 included dehydration,demethylation,deamination,hydroxylation,oxidation and ring opening.Bacteroidetes,Proteobacteria and Acidobacteria played key roles in the biodegradation of OTC with T4 in the soil.The results also showed that tet(G)was the most frequently detected ARGs among the 13 common tetracycline ARGs that were investigated.The bacterial community shift observed in this study may provide new insights into the microbial degradation of OTC in soil.展开更多
The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate ...The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.展开更多
Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are cruci...Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are crucial due to the horizontal transfer of these natural products from PA-producing plants to soil and subsequently absorbed by plant roots.This study firstly investigated the sorption/desorption behaviors of PAs/PANOs in tea plantation soils with distinct characteristics.Sorption amounts for seneciphylline(Sp)and seneciphylline-N-oxide(SpNO)in three acidic soils ranged from 2.9 to 5.9μg/g and 1.7 to 2.8μg/g,respectively.Desorption percentages for Sp and SpNO were from 22.2%to 30.5%and 36.1%to 43.9%.In the mixed PAs/PANOs systems,stronger sorption of PAs over PANOs was occurred in tested soils.Additionally,the Freundlich models more precisely described the sorption/desorption isotherms.Cation exchange capacity,sand content and total nitrogen were identified as major influencing factors by linear regression models.Overall,the soils exhibiting higher sorption capacities for compounds with greater hydrophobicity.PANOs were more likely to migrate within soils and be absorbed by tea plants.It contributes to the understanding of environmental fate of PAs/PANOs in tea plantations and provides basic data and clues for the development of PAs/PANOs reduction technology.展开更多
Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily ...Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.展开更多
Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding ...Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.展开更多
Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sit...Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sites.This study developed a standardized framework for assessing soil quality by consideringmicrobial-induced resilience and heavymetal contamination at Xikuangshan antimony smelting site.The soil resilience index(SRI)and soil contamination index(SCI)were calculated byMinimum Data Set and geo-accumulation model,respectively.After standardized by a multi-criteria quantitative procedure of modified Nemerow’s pollution index(NPI),the integrated assessment of soil quality index(SQI),which is the minimumof SRINPI and SCINPI,was achieved.The results showed that Sb and As were the prominent metal(loid)pollutants,and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience.The primary limiting factors of SRI were Fungi in high andmiddle contaminated areas,and Skermanella in low contaminated area,suggesting that the weak soil resilience was caused by low specific microbial abundances.Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement.This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.展开更多
Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of th...Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of the areas of the City of Diwaniyah,in a house covered with green netting,with a shade rate of 25%,to study the effect of bentonite and humic acid on the growth and flowering of a Catharanthus roseus L.plant in sandy soil.The experiment included two factors:the first factor was bentonite clay,and the second factor was humic acid.Using a randomized complete block design(R.C.B.D)with three replications,data were analyzed using the analysis of variance(ANOVA)method,and comparison was made according to the least significant difference(L.S.D)test at a probability level of 0.05.The experiment consisted of adding bentonite clay at 0,2,6,and 8 g L-1,humic acid at 0,0.5,1,and 10 g L-1.The results showed that adding bentonite clay and humic acid to sandy soil can have a significant positive effect on the growth and flowering of the Catharanthus roseus plant grown in poor sandy soil conditions.Bentonite,clay and humic acid were added at concentrations of 8 and 10 g L-1,which led to an increase in plant height and number of leaves and leaf area.They reached 30.07,23.84 cm2,76.62,63.42 cm2 for leaf-1 and 24.73,20.22 cm2 for leaf-1,respectively.The results also showed an increase in the content of nitrogen(N),phosphorus(P),and potassium(K)in leaves by 2.27,1.92,1.99%and 1.51,1.22,1.77%.This also led to an increase in chlorophyll pigment and anthocyanin at the highest concentration and gave the highest value.Therefore,adding bentonite and humic acid together gave the highest values in vegetative and chemical characteristics,compared to treatments without addition.展开更多
The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to...The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to its rich mineral and geothermal resources.This review provides a comprehensive analysis of As content,focusing on its distribution,environmental migration,and transformation behavior across the plateau.The review further evaluates the distribution of As in different functional areas,revealing that geothermal fields(107.2 mg/kg),mining areas(53.8 mg/kg),and croplands(39.3 mg/kg)have the highest As concentrations,followed by river and lake sediments and adjacent areas(33.1 mg/kg).These elevated levels are primarily attributed to the presence of As-rich minerals,such as arsenopyrite and pyrite.Additionally,human activities,including mining and geothermal energy production,exacerbate the release of As into the environment.The review also highlights the role of localmicroorganisms,particularly those fromthe phyla Proteobacteria and Actinobacteria,which possess As metabolic genes that facilitate As translocation.Given the unique climatic conditions of the plateau,conventionalmethods for As controlmay not be fully effective.However,the review identifies promising remediation strategies that are environmentally adaptable,such as the use of local microorganisms,specific adsorbents,and integrated technologies,which offer potential solutions for managing and utilizing Ascontaminated soils on the plateau.展开更多
This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends kno...This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends knowledge-sharing platforms,soil protection laws,and collaborative efforts between regulatory agencies and agricultural experts.The study emphasizes the need for a balanced approach that includes natural methods alongside synthetic chemicals,particularly herbicides.Ten years ago,farmers primarily used urea,DAP,and potassium for nutrients.However,increased awareness,market forces,and government subsidies have led to a significant rise in herbicide use as a cost-effective weed management strategy.Over the past decade,synthetic fertilizer use for cotton cultivation has increased by 80%,leading to deteriorating soil quality.Paddy cultivation has decreased by 23%,while cotton cultivation has increased by 20.4%due to higher economic incentives.Currently,89.1%of farmers use herbicides,compared to 97.2%who did not a decade ago.Insecticide use has also surged,with 97.8%of farmers applying 1.5 liters or more per acre.The excessive use of chemicals threatens soil fertility and disrupts the ecosystem’s balance.This article explores the reasons behind the adoption of chemical-intensive farming practices and offers insights into farmers’decision-making processes.The careful use of synthetic chemicals is essential to safeguard soil health and maintain ecological balance.展开更多
Ball milling is an environmentally friendly technology for the remediation of petroleumcontaminated soil(PCS),but the cleanup of organic pollutants requires a long time,and the post-remediation soil needs an economica...Ball milling is an environmentally friendly technology for the remediation of petroleumcontaminated soil(PCS),but the cleanup of organic pollutants requires a long time,and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume.The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil(BCS-O)as wastewater treatment materials.The total petroleum hydrocarbon removal rates by ball milling under vacuum,air,and oxygen atmospheres are 39.83%,55.21%,and 93.84%,respectively.The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals.The Cu^(2+),Ni^(2+),and Mn^(2+)adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides.Furthermore,BCS-O can effectively activate persulfate(PDS)oxidation to degrade aniline,while BCS-O loaded with transition metal(BCS-O-Me)shows better activation efficiency and reusability.BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by^(1)O_(2)oxidation and electron transfer.The main active sites are oxygen-containing functional groups,vacancy defects,and graphitized carbon.The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate^(1)O_(2)and attack aniline.Graphitized carbon promotes aniline degradation by accelerating electron transfer.The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the postremediation soil.展开更多
Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution...Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution of hillslope soil moisture replenishment after precipitation determines vegetation survival and growth.Therefore,in this study experiments were performed on a hillslope in the Liupan Mountains,Ningxia Hui Autonomous Region,China,to quantify the unevenness of soil moisture replenishment.Soil water content(SWC)in the 0–60 cm layer and precipitation were monitored throughout the growing season in 2020 and 2021.The results showed that(1)Annual soil moisture replenishment was the highest at the mid-slope position,with an average of 309.9 mm,especially under moderate and heavy rain grade conditions,reaching 38.7% and 30.8% of the total replenishment,respectively;(2)Vertical replenishment played a dominant role in the total replenishment,accounting for 82.8%;lateral replenishment played an important but lesser role,accounting for up to 17.2% of the total replenishment;(3)Based on a soil moisture replenishment model established in this study,the maximal replenishment occurred at 90 m from the top of the slope;(4)The dominant factors contributing to the soil moisture replenishment were rainfall amount and saturated hydraulic conductivity(Ks).These findings suggest that attention should be given to both vertical and lateral soil moisture replenishment,and the mid-slope position could be preferred for site selection to achieve precise and integrated forest-water management on hillslopes in semi-arid mountainous regions.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52100184,and U22A20617).
文摘Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.
文摘Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
基金supported by the Key Research and Development Program of Shandong Province,China(No 2021CXGC010803)Pan’an County Chinese Medicine Industry Project(No.PZYF202103).
文摘Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.
基金supported by the National Natural Science Foundation of China(No.32171615)the National Key R&D Program of China(2019YFC1804102)。
文摘Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to inducing antibiotic-HMs combined pollution.Recently,frequent human activities have led to more prominent antibiotics-HMs combined contamination in agricultural soils,especially the production and spread of antibiotic resistance genes(ARGs),heavy metal resistance genes(MRGs),antibiotic resistant bacteria(ARB),and antibiotics-HMs complexes(AMCs),which seriously threaten soil ecology and human health.This review describes the main sources(Intrinsic and manmade sources),composite mechanisms(co-selective resistance,oxidative stress,and Joint toxicity mechanism),environmental fate and the potential risks(soil ecological and human health risks)of antibiotics and HMs in agricultural soils.Finally,the current effective source blocking,transmission control,and attenuation strategies are classified for discussion,such as the application of additives and barrier materials,as well as plant and animal remediation and bioremediation,etc.,pointing out that future research should focus on the whole chain process of“source-processterminal”,intending to provide a theoretical basis and decision-making reference for future research.
基金supported by the National Natural Science Foundation of Shandong(No.ZR2020ZD20)the National Natural Science Foundation of China(No.22193051)+1 种基金the National Young Top-Notch Talents(No.W03070030)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202011).
文摘Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies.This study evaluated the feasibility of European Community Bureau of Reference(BCR)sequential extraction,Ca(NO_(3))_(2)extraction,and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime,magnesium hydroxide,corn stover biochar,and calcium dihydrogen phosphate.Moreover,the enriched isotope tracing technique(^(112)Cd and^(206)Pb)was employed to evaluate the aging process of newly introduced Cd and Pbwithin 56 days’incubation.Results demonstrated that extractable pools by BCR and Ca(NO_(3))_(2)extraction were little impacted by amendments and showed little correlation with soil pH.This is notable because soil pH is closely linked to metal availability,indicating these extraction methods may not adequately reflect metal availability.Conversely,water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH(Pearson’s r:-0.908 to-0.825,P<0.001),suggesting water extraction as a more sensitive approach.Furthermore,newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools.Additionally,water-soluble concentrations of essential metals were impacted by soil amendments,raising caution on their potential effects on plant growth.These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability,which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies.
基金funded by the Science and Technology Plan for the Belt and Road Innovation Cooperation Project of Jiangsu Province,China(No.BZ2023003)the National Key Research and Development Program of China(No.2021YFD1500202)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA28010100)the“14th Five-Year Plan”Self-Deployment Project of the Institute of Soil Science,Chinese Academy of Sciences(No.ISSAS2418)the National Natural Science Foundation of China(No.42107334)。
文摘Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
基金funded by the earmarked fund for China Agriculture Research System(CARS-29-zp-10)。
文摘Oxytetracycline(OTC)is used extensively in animal husbandry and enters the soil in different forms,causing severe environmental pollution.Previous studies have shown that the genus Pseudomonas can potentially degrade antibiotics in the soil environment.Environmental conditions,such as the initial concentration of antibiotics,incubation temperature and others,have significant impacts on the activity of antibiotic-degrading bacteria.However,few reports have clarified the environmental impacts on the effectiveness of Pseudomonas spp.In the present study,we investigated the effects of different initial concentrations of OTC and incubation temperatures,as well as soil sterilization,on OTC degradation by Pseudomonas strain T4.We also focused on the microbial degradation pathways of OTC,and variations in both antibiotic resistance genes(ARGs)and microbial communities with T4 functioning under optimal conditions.The results showed that the most effective degradation occurred under an initial OTC concentration of 2.5 mg kg^(-1)at 30℃in unsterilized soil spiked with T4.These conditions yielded an OTC degradation rate of 69.53%within 63 days.The putative degradation pathways of OTC in the presence of T4 included dehydration,demethylation,deamination,hydroxylation,oxidation and ring opening.Bacteroidetes,Proteobacteria and Acidobacteria played key roles in the biodegradation of OTC with T4 in the soil.The results also showed that tet(G)was the most frequently detected ARGs among the 13 common tetracycline ARGs that were investigated.The bacterial community shift observed in this study may provide new insights into the microbial degradation of OTC in soil.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.42425107)Ecological Civilization Special Project of Key Research&and Development Program in Gansu Province(No.24YFFA009)the Top Talent Project of Gansu Province,Chinese Academy of Sciences Young Crossover Team Project(No.JCTD-2022-18)。
文摘The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.
基金supported by the earmarked fund for the Modern Agro-Industry Technology Research System (No.CARS-19)the Innovative Research Team in Chinese Academy of Agricultural Sciences (No.CAAS ASTIP-2014-TRICAAS).
文摘Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are crucial due to the horizontal transfer of these natural products from PA-producing plants to soil and subsequently absorbed by plant roots.This study firstly investigated the sorption/desorption behaviors of PAs/PANOs in tea plantation soils with distinct characteristics.Sorption amounts for seneciphylline(Sp)and seneciphylline-N-oxide(SpNO)in three acidic soils ranged from 2.9 to 5.9μg/g and 1.7 to 2.8μg/g,respectively.Desorption percentages for Sp and SpNO were from 22.2%to 30.5%and 36.1%to 43.9%.In the mixed PAs/PANOs systems,stronger sorption of PAs over PANOs was occurred in tested soils.Additionally,the Freundlich models more precisely described the sorption/desorption isotherms.Cation exchange capacity,sand content and total nitrogen were identified as major influencing factors by linear regression models.Overall,the soils exhibiting higher sorption capacities for compounds with greater hydrophobicity.PANOs were more likely to migrate within soils and be absorbed by tea plants.It contributes to the understanding of environmental fate of PAs/PANOs in tea plantations and provides basic data and clues for the development of PAs/PANOs reduction technology.
基金supported by the National Key Research and Development Program of China(No.2020YFC1808701).
文摘Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.
基金funding support from the NSFC Key Projects of International Cooperation and Exchanges (Grant No.42020104006)the National Key Research and Development Program of China (Grant No.2023YFC3007001)the National Natural Science Foundation of China (Grant No.42307227).
文摘Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.
基金supported by the National Key Research and Development Program of China (No.2019YFC1803604)the National Natural Science Foundation of China (Nos.42007306 and 42277193).
文摘Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sites.This study developed a standardized framework for assessing soil quality by consideringmicrobial-induced resilience and heavymetal contamination at Xikuangshan antimony smelting site.The soil resilience index(SRI)and soil contamination index(SCI)were calculated byMinimum Data Set and geo-accumulation model,respectively.After standardized by a multi-criteria quantitative procedure of modified Nemerow’s pollution index(NPI),the integrated assessment of soil quality index(SQI),which is the minimumof SRINPI and SCINPI,was achieved.The results showed that Sb and As were the prominent metal(loid)pollutants,and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience.The primary limiting factors of SRI were Fungi in high andmiddle contaminated areas,and Skermanella in low contaminated area,suggesting that the weak soil resilience was caused by low specific microbial abundances.Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement.This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.
文摘Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of the areas of the City of Diwaniyah,in a house covered with green netting,with a shade rate of 25%,to study the effect of bentonite and humic acid on the growth and flowering of a Catharanthus roseus L.plant in sandy soil.The experiment included two factors:the first factor was bentonite clay,and the second factor was humic acid.Using a randomized complete block design(R.C.B.D)with three replications,data were analyzed using the analysis of variance(ANOVA)method,and comparison was made according to the least significant difference(L.S.D)test at a probability level of 0.05.The experiment consisted of adding bentonite clay at 0,2,6,and 8 g L-1,humic acid at 0,0.5,1,and 10 g L-1.The results showed that adding bentonite clay and humic acid to sandy soil can have a significant positive effect on the growth and flowering of the Catharanthus roseus plant grown in poor sandy soil conditions.Bentonite,clay and humic acid were added at concentrations of 8 and 10 g L-1,which led to an increase in plant height and number of leaves and leaf area.They reached 30.07,23.84 cm2,76.62,63.42 cm2 for leaf-1 and 24.73,20.22 cm2 for leaf-1,respectively.The results also showed an increase in the content of nitrogen(N),phosphorus(P),and potassium(K)in leaves by 2.27,1.92,1.99%and 1.51,1.22,1.77%.This also led to an increase in chlorophyll pigment and anthocyanin at the highest concentration and gave the highest value.Therefore,adding bentonite and humic acid together gave the highest values in vegetative and chemical characteristics,compared to treatments without addition.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund(No.Y2024QC29)the Central Public-interest Scientific Institution Basal Research Fund(Nos.2024-jbkyywf-lwj and 2024-jbkyywf-zyj).
文摘The Qinghai-Tibet Plateau,with its high altitude and cold climate,is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic(As)levels in the soil,largely due to its rich mineral and geothermal resources.This review provides a comprehensive analysis of As content,focusing on its distribution,environmental migration,and transformation behavior across the plateau.The review further evaluates the distribution of As in different functional areas,revealing that geothermal fields(107.2 mg/kg),mining areas(53.8 mg/kg),and croplands(39.3 mg/kg)have the highest As concentrations,followed by river and lake sediments and adjacent areas(33.1 mg/kg).These elevated levels are primarily attributed to the presence of As-rich minerals,such as arsenopyrite and pyrite.Additionally,human activities,including mining and geothermal energy production,exacerbate the release of As into the environment.The review also highlights the role of localmicroorganisms,particularly those fromthe phyla Proteobacteria and Actinobacteria,which possess As metabolic genes that facilitate As translocation.Given the unique climatic conditions of the plateau,conventionalmethods for As controlmay not be fully effective.However,the review identifies promising remediation strategies that are environmentally adaptable,such as the use of local microorganisms,specific adsorbents,and integrated technologies,which offer potential solutions for managing and utilizing Ascontaminated soils on the plateau.
文摘This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends knowledge-sharing platforms,soil protection laws,and collaborative efforts between regulatory agencies and agricultural experts.The study emphasizes the need for a balanced approach that includes natural methods alongside synthetic chemicals,particularly herbicides.Ten years ago,farmers primarily used urea,DAP,and potassium for nutrients.However,increased awareness,market forces,and government subsidies have led to a significant rise in herbicide use as a cost-effective weed management strategy.Over the past decade,synthetic fertilizer use for cotton cultivation has increased by 80%,leading to deteriorating soil quality.Paddy cultivation has decreased by 23%,while cotton cultivation has increased by 20.4%due to higher economic incentives.Currently,89.1%of farmers use herbicides,compared to 97.2%who did not a decade ago.Insecticide use has also surged,with 97.8%of farmers applying 1.5 liters or more per acre.The excessive use of chemicals threatens soil fertility and disrupts the ecosystem’s balance.This article explores the reasons behind the adoption of chemical-intensive farming practices and offers insights into farmers’decision-making processes.The careful use of synthetic chemicals is essential to safeguard soil health and maintain ecological balance.
基金supported by the National Natural Science Foundation of China(No.41772240)the Key Research and Development program of Jiangsu Province(No.BE2021637).
文摘Ball milling is an environmentally friendly technology for the remediation of petroleumcontaminated soil(PCS),but the cleanup of organic pollutants requires a long time,and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume.The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil(BCS-O)as wastewater treatment materials.The total petroleum hydrocarbon removal rates by ball milling under vacuum,air,and oxygen atmospheres are 39.83%,55.21%,and 93.84%,respectively.The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals.The Cu^(2+),Ni^(2+),and Mn^(2+)adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides.Furthermore,BCS-O can effectively activate persulfate(PDS)oxidation to degrade aniline,while BCS-O loaded with transition metal(BCS-O-Me)shows better activation efficiency and reusability.BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by^(1)O_(2)oxidation and electron transfer.The main active sites are oxygen-containing functional groups,vacancy defects,and graphitized carbon.The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate^(1)O_(2)and attack aniline.Graphitized carbon promotes aniline degradation by accelerating electron transfer.The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the postremediation soil.
基金financially supported by the Central Public-Interest Scientific Institution Basal Research Fund of Chinese Academy of Forestry(CAFYBB2021ZW002)the National Key Research and Development Program of China(2022YFF1300404)the National Natural Science Foundation of China(U21A2005)。
文摘Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution of hillslope soil moisture replenishment after precipitation determines vegetation survival and growth.Therefore,in this study experiments were performed on a hillslope in the Liupan Mountains,Ningxia Hui Autonomous Region,China,to quantify the unevenness of soil moisture replenishment.Soil water content(SWC)in the 0–60 cm layer and precipitation were monitored throughout the growing season in 2020 and 2021.The results showed that(1)Annual soil moisture replenishment was the highest at the mid-slope position,with an average of 309.9 mm,especially under moderate and heavy rain grade conditions,reaching 38.7% and 30.8% of the total replenishment,respectively;(2)Vertical replenishment played a dominant role in the total replenishment,accounting for 82.8%;lateral replenishment played an important but lesser role,accounting for up to 17.2% of the total replenishment;(3)Based on a soil moisture replenishment model established in this study,the maximal replenishment occurred at 90 m from the top of the slope;(4)The dominant factors contributing to the soil moisture replenishment were rainfall amount and saturated hydraulic conductivity(Ks).These findings suggest that attention should be given to both vertical and lateral soil moisture replenishment,and the mid-slope position could be preferred for site selection to achieve precise and integrated forest-water management on hillslopes in semi-arid mountainous regions.