The kinetic characteristics of plasma-assisted oxidative pyrolysis of ammonia are studied by using the global/fluid models hybrid solution method.Firstly,the stable products of plasma-assisted oxidative pyrolysis of a...The kinetic characteristics of plasma-assisted oxidative pyrolysis of ammonia are studied by using the global/fluid models hybrid solution method.Firstly,the stable products of plasma-assisted oxidative pyrolysis of ammonia are measured.The results show that the consumption of NH_(3)/O_(2)and the production of N_(2)/H_(2)change linearly with the increase of voltage,which indicates the decoupling of nonequilibrium molecular excitation and oxidative pyrolysis of ammonia at low temperatures.Secondly,the detailed reaction kinetics mechanism of ammonia oxidative pyrolysis stimulated by a nanosecond pulse voltage at low pressure and room temperature is established.Based on the reaction path analysis,the simplified mechanism is obtained.The detailed and simplified mechanism simulation results are compared with experimental data to verify the accuracy of the simplified mechanism.Finally,based on the simplified mechanism,the fluid model of ammonia oxidative pyrolysis stimulated by the nanosecond pulse plasma is established to study the pre-sheath/sheath behavior and the resultant consumption and formation of key species.The results show that the generation,development,and propagation of the pre-sheath have a great influence on the formation and consumption of species.The consumption of NH_(3)by the cathode pre-sheath is greater than that by the anode pre-sheath,but the opposite is true for OH and O(1S).However,within the sheath,almost all reactions do not occur.Further,by changing the parameters of nanosecond pulse power supply voltage,it is found that the electron number density,electron current density,and applied peak voltages are not the direct reasons for the structural changes of the sheath and pre-sheath.Furthermore,the discharge interval has little effect on the sheath structure and gas mixture breakdown.The research results of this paper not only help to understand the kinetic promotion of non-equilibrium excitation in the process of oxidative pyrolysis but also help to explore the influence of transport and chemical reaction kinetics on the oxidative pyrolysis of ammonia.展开更多
Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automat...Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.展开更多
This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The m...This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The motion of the fluid is taken as two-dimensional with the impact of a magnetic field in the normal direction. The variable, permeable, and stretching nature of sheet's surface sets the fluid into motion. Thermal and mass diffusions are controlled through the use of the Cattaneo–Christov flux model. A dataset is generated using MATLAB bvp4c package solver and employed to train an artificial neural network(ANN) based on the Levenberg–Marquardt back-propagation(LMBP) algorithm. It has been observed as an outcome of this study that the modeled problem achieves peak performance at epochs 637, 112, 4848, and 344 using ANN-LMBP. The linear velocity of the fluid weakens with progression in variable porous and magnetic factors.With an augmentation in magnetic factor, the micro-rotational velocity profiles are augmented on the domain 0 ≤ η < 1.5 due to the support of micro-rotations by Lorentz forces close to the sheet's surface, while they are suppressed on the domain 1.5 ≤ η < 6.0 due to opposing micro-rotations away from the sheet's surface. Thermal distributions are augmented with an upsurge in thermophoresis, Brownian motion, magnetic, and radiation factors, while they are suppressed with an upsurge in thermal relaxation parameter. Concentration profiles increase with an expansion in thermophoresis factor and are suppressed with an intensification of Brownian motion factor and solute relaxation factor. The absolute errors(AEs) are evaluated for all the four scenarios that fall within the range 10^(-3)–10^(-8) and are associated with the corresponding ANN configuration that demonstrates a fine degree of accuracy.展开更多
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe...Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.展开更多
This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These ca...This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These categories include(1)conventional CFD problems that can be solved using existing numerical methods in LLMs,such as lid-driven cavity flow and the Sod shock tube problem;(2)problems that require new numerical methods beyond those available in LLMs,such as the recently developed Chien-physics-informed neural networks for singularly perturbed convection-diffusion equations;and(3)problems that cannot be solved using existing numerical methods in LLMs,such as the ill-conditioned Hilbert linear algebraic systems.The evaluations indicate that reasoning LLMs overall outperform non-reasoning models in four test cases.Reasoning LLMs show excellent performance for CFD problems according to the tailored prompts,but their current capability in autonomous knowledge exploration and creation needs to be enhanced.展开更多
A 1∶8 physical water model was constructed to investigate the fluid flow and mixing phenomena in the basic oxygen furnace(BOF)converter.The particle image velocimetry was employed to measure the velocity distribution...A 1∶8 physical water model was constructed to investigate the fluid flow and mixing phenomena in the basic oxygen furnace(BOF)converter.The particle image velocimetry was employed to measure the velocity distribution of the bath and the high-speed camera was applied to capture the cavity shape in the combined blowing BOF converter.The mixing time for varied operating conditions was measured by the stimulus-response approach.The cavity depth increased with the decrease in the lance height and the increase in the top gas flow rate while the bottom blowing gas had little influence on the cavity depth.The minimum cavity depth was obtained under the condition of a 69.8 m^(3)/h top gas flow rate,a 287.5 mm lance height and a 0.93 m^(3)/h bottom blowing gas flow rate,which was 161.2 mm.The mixing time decreased as the lance height decreased and the top blowing gas flow rate increased.The mixing time was first decreased and then increased with the increase in the bottom gas flow rate.With the condition of 69.8 m^(3)/h gas flow rate of top blowing,the 287.5 mm lance height and the 0.93 m^(3)/h gas flow rate of bottom blowing,the mixing time in the converter was 48.65 s.The empirical formula between the stirring power and the mixing time in the converter was calculated.展开更多
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
The modeling of turbulence,especially the high-speed compressible turbulence encountered in aerospace engineering,has always being a significant challenge in terms of balancing efficiency and accuracy.Most traditional...The modeling of turbulence,especially the high-speed compressible turbulence encountered in aerospace engineering,has always being a significant challenge in terms of balancing efficiency and accuracy.Most traditional models typically show limitations in universality,accuracy,and reliance on past experience.The stochastic multi-scale models show great potential in addressing these issues by representing turbulence across all characteristic scales in a reduced-dimensional space,maintaining sufficient accuracy while reducing computational cost.This review systematically summarizes advances in methods related to a widely used and refined stochastic multi-scale model,the One-Dimensional Turbulence(ODT).The advancements in formulations are emphasized for stand-alone incompressible ODT models,stand-alone compressible ODT models,and coupling methods.Some diagrams are also provided to facilitate more readers to understand the ODT methods.Subsequently,the significant developments and applications of stand-alone ODT models and coupling methods are introduced and critically evaluated.Despite the extensively recognized effectiveness of ODT models in low-speed turbulent flows,it is crucial to emphasize that there is still a research gap in the field of ODT coupling methods that are capable of accurately and efficiently simulating complex,three-dimensional,high-speed compressible turbulent flows up to now.Based on an analysis of the advantages and limitations of existing ODT methods,the recent advancement in the conservative compressible ODT model is considered to have provided a promising approach to tackle the modeling challenges of high-speed compressible turbulence.Therefore,this review outlines several recommended new research subjects and challenging issues to inspire further research in simulating complex,three-dimensional,high-speed compressible turbulent flows using ODT models.展开更多
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in...The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.展开更多
Objective:To explore an intervention strategy for patients with fluid overload undergoing maintenance hemodialysis and to evaluate the effects of the LEARNS model on improving self-care agency and patient compliance.M...Objective:To explore an intervention strategy for patients with fluid overload undergoing maintenance hemodialysis and to evaluate the effects of the LEARNS model on improving self-care agency and patient compliance.Methods:A total of 76 patients with fluid overload undergoing maintenance hemodialysis at our hospital from March 2023 to March 2024 were selected for the study.Patients were randomly divided into two groups,with 38 in each group.The control group received conventional interventions,while the observation group was treated using the LEARNS model.Self-care agency,compliance,and quality of life outcomes in both groups were analyzed and compared.Results:Before the intervention,no statistically significant differences were observed in the self-care agency scores between the two groups(P>0.05).After the intervention,patients’self-care agency improved significantly,with the observation group showing notably higher scores than the control group(P<0.05).Patient compliance in the observation group was also significantly higher than in the control group(P<0.05).Quality of life,assessed using the SF-36 scale,showed no significant differences between the two groups prior to intervention(P>0.05).After the intervention,quality of life scores improved significantly in both groups,with the observation group exhibiting significantly higher scores than the control group(P<0.05).Conclusion:The LEARNS model is effective in improving patient compliance,enhancing self-care agency,and improving quality of life in maintenance hemodialysis patients with fluid overload,making it a promising approach for broader application.展开更多
This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a t...This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a thermal balance was established for the heat transfer fluid, the absorber and the glass. This allowed us to establish an equation system whose resolution was done by the finite difference method. Then, a computer program was developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. The numerical resolution made it possible to obtain the temperatures of the heat transfer fluid, the absorber and the glass. The simulation of the fluid heating process was done in one-hour time steps, from six in the morning to six in the afternoon. The results obtained show that the temperature difference between the inlet and the outlet of the sensor is very significant. These results obtained, regarding the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors, allow for the improvement of the performances of our prototype.展开更多
Accurately characterizing the pore structure of Tamusu mudstone and simulating fluid flow within it are crucial for assessing underground disposal of high-level radioactive waste(HLW)in this formation.Modeling mudston...Accurately characterizing the pore structure of Tamusu mudstone and simulating fluid flow within it are crucial for assessing underground disposal of high-level radioactive waste(HLW)in this formation.Modeling mudstone presents challenges due to its multiscale pore structure and the necessity that accounts for the effects of high clay content.A method for constructing a dual-scale pore network model(PNM)for the Tamusu mudstone,which considers the hydrological expansion of clays,was proposed.This model integrates N2 adsorption data with focused ion beam/scanning electron microscopy(FIB/SEM)images and labels pores based on clay content.Simulations of single-phase flow were conducted to validate the proposed model.Additionally,the influences of cell number,connectivity,slip effects,and clay minerals on permeability were examined.The findings indicate that a configuration of 45×45×45 cells adequately represents the model.The permeability of the Tamusu mudstone,about 1020 m^(2),aligns with the experimental values.During the simulation,Knudsen diffusion is considered.Factors such as increased roughness,tortuosity,clay content,and water film thickness decrease the permeability,whereas increased connectivity enhances permeability.In the model,numerical coordination numbers 2 and 3 are deemed suitable for the Tamusu mudstone.The proposed model is effective as a tool for constructing and simulating fluid flow in the Tamusu mudstone.展开更多
This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer si...This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer significant advantages for urban wind applications,such as omnidirectional wind capture and a compact,ground-accessible design,they face substantial aerodynamic challenges,including dynamic stall,blade-wake interactions,and continuously varying angles of attack throughout their rotation.The review critically evaluates how CFD has been leveraged to address these challenges,detailing the modelling frameworks,simulation setups,mesh strategies,turbulence models,and boundary condition treatments adopted in the literature.Special attention is given to the comparative performance of 2-D vs.3-D simulations,static and dynamic meshing techniques(sliding,overset,morphing),and the impact of near-wall resolution on prediction fidelity.Moreover,this review maps the evolution of CFD tools in capturing key performance indicators including power coefficient,torque,flow separation,and wake dynamics,while highlighting both achievements and current limitations.The synthesis of studies reveals best practices,identifies gaps in simulation fidelity and validation strategies,and outlines critical directions for future research,particularly in high-fidelity modelling and cost-effective simulation of urban-scale VAWTs.By synthesizing insights from over a hundred referenced studies,this review serves as a consolidated resource to advance VAWT design and performance optimization through CFD.These include studies on various aspects such as blade geometry refinement,turbulence modeling,wake interaction mitigation,tip-loss reduction,dynamic stall control,and other aerodynamic and structural improvements.This,in turn,supports their broader integration into sustainable energy systems.展开更多
The Xingyuan large fluorite deposit in Fengning,Hebei Province,China,is a significant deposit in the North Hebei-West Liaoning fluorite mineralization belt.The ore bodies are structurally controlled and occur in fault...The Xingyuan large fluorite deposit in Fengning,Hebei Province,China,is a significant deposit in the North Hebei-West Liaoning fluorite mineralization belt.The ore bodies are structurally controlled and occur in fault zones near granitic porphyry veins.Previous studies have focused on the geology and ore-controlling factors,whereas the general features of the hydrothermal systems that contributed to the formation of the deposit remain unclear.This study investigated the nature,origin,and evolution of mineralizing fluids in the Fengning deposit,based on fluid inclusion and H-O isotope data.The fluid inclusions in fluorite are mostly H2O-rich,gas-liquid,two-phase inclusions,along with a few three-phase inclusions containing halite daughter crystals and CO_(2)gas.The ore-forming fluid was variable in homogenization temperature(108-388°C),salinity(0.2-47.4 wt%NaCl equivalent),and density(0.58-1.11 g/cm^(3)),which indicate it was a H2O-NaCl-CO_(2)system of moderate-low temperature,low salinity,and low density.Fluorite H-O isotopes(δD_(V-SMOW)=−123.5‰to−111.8‰;δ^(18)O_(V-SMOW)=−10.3‰to−6.5‰),temperature data,and fluid compositions indicate the mineralizing fluid was initially dominated by magmatic waters,but then experienced a large influx of meteoric waters.The fluid temperature and salinity decreased and the density increased from the early to late stages of mineralization.The main mechanisms of fluorite precipitation were water-rock reactions and fluid cooling.The Xingyuan fluorite deposit is a post-magmatic hydrothermal deposit.展开更多
基金Fundamental Research Funds for the Central Universities(M23JBZY00050)National Natural Science Foundation of China(22278032)。
文摘The kinetic characteristics of plasma-assisted oxidative pyrolysis of ammonia are studied by using the global/fluid models hybrid solution method.Firstly,the stable products of plasma-assisted oxidative pyrolysis of ammonia are measured.The results show that the consumption of NH_(3)/O_(2)and the production of N_(2)/H_(2)change linearly with the increase of voltage,which indicates the decoupling of nonequilibrium molecular excitation and oxidative pyrolysis of ammonia at low temperatures.Secondly,the detailed reaction kinetics mechanism of ammonia oxidative pyrolysis stimulated by a nanosecond pulse voltage at low pressure and room temperature is established.Based on the reaction path analysis,the simplified mechanism is obtained.The detailed and simplified mechanism simulation results are compared with experimental data to verify the accuracy of the simplified mechanism.Finally,based on the simplified mechanism,the fluid model of ammonia oxidative pyrolysis stimulated by the nanosecond pulse plasma is established to study the pre-sheath/sheath behavior and the resultant consumption and formation of key species.The results show that the generation,development,and propagation of the pre-sheath have a great influence on the formation and consumption of species.The consumption of NH_(3)by the cathode pre-sheath is greater than that by the anode pre-sheath,but the opposite is true for OH and O(1S).However,within the sheath,almost all reactions do not occur.Further,by changing the parameters of nanosecond pulse power supply voltage,it is found that the electron number density,electron current density,and applied peak voltages are not the direct reasons for the structural changes of the sheath and pre-sheath.Furthermore,the discharge interval has little effect on the sheath structure and gas mixture breakdown.The research results of this paper not only help to understand the kinetic promotion of non-equilibrium excitation in the process of oxidative pyrolysis but also help to explore the influence of transport and chemical reaction kinetics on the oxidative pyrolysis of ammonia.
基金supported by the National Natural Science Foundation of China(Grant Nos.52306126,22350710788,12432010,11988102,92270203)the Xplore Prize.
文摘Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Group Project (Grant No. RGP2/198/45)Project supported by Prince Sattam bin Abdulaziz University (Grant No. PSAU/2025/R/1446)。
文摘This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The motion of the fluid is taken as two-dimensional with the impact of a magnetic field in the normal direction. The variable, permeable, and stretching nature of sheet's surface sets the fluid into motion. Thermal and mass diffusions are controlled through the use of the Cattaneo–Christov flux model. A dataset is generated using MATLAB bvp4c package solver and employed to train an artificial neural network(ANN) based on the Levenberg–Marquardt back-propagation(LMBP) algorithm. It has been observed as an outcome of this study that the modeled problem achieves peak performance at epochs 637, 112, 4848, and 344 using ANN-LMBP. The linear velocity of the fluid weakens with progression in variable porous and magnetic factors.With an augmentation in magnetic factor, the micro-rotational velocity profiles are augmented on the domain 0 ≤ η < 1.5 due to the support of micro-rotations by Lorentz forces close to the sheet's surface, while they are suppressed on the domain 1.5 ≤ η < 6.0 due to opposing micro-rotations away from the sheet's surface. Thermal distributions are augmented with an upsurge in thermophoresis, Brownian motion, magnetic, and radiation factors, while they are suppressed with an upsurge in thermal relaxation parameter. Concentration profiles increase with an expansion in thermophoresis factor and are suppressed with an intensification of Brownian motion factor and solute relaxation factor. The absolute errors(AEs) are evaluated for all the four scenarios that fall within the range 10^(-3)–10^(-8) and are associated with the corresponding ANN configuration that demonstrates a fine degree of accuracy.
基金funded by the National Key R&D Program of China,China(Grant No.2023YFB4005500)National Natural Science Foundation of China,China(Grant Nos.52379113 and 52379114).
文摘Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.
基金supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.11988102)the National Natural Science Foundation of China(Grant No.12202451).
文摘This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These categories include(1)conventional CFD problems that can be solved using existing numerical methods in LLMs,such as lid-driven cavity flow and the Sod shock tube problem;(2)problems that require new numerical methods beyond those available in LLMs,such as the recently developed Chien-physics-informed neural networks for singularly perturbed convection-diffusion equations;and(3)problems that cannot be solved using existing numerical methods in LLMs,such as the ill-conditioned Hilbert linear algebraic systems.The evaluations indicate that reasoning LLMs overall outperform non-reasoning models in four test cases.Reasoning LLMs show excellent performance for CFD problems according to the tailored prompts,but their current capability in autonomous knowledge exploration and creation needs to be enhanced.
基金support from the National Natural Science Foundation of China(U22A20171)the High Steel Center(HSC)at North China University of Technology and University of Science and Technology Beijing,China.
文摘A 1∶8 physical water model was constructed to investigate the fluid flow and mixing phenomena in the basic oxygen furnace(BOF)converter.The particle image velocimetry was employed to measure the velocity distribution of the bath and the high-speed camera was applied to capture the cavity shape in the combined blowing BOF converter.The mixing time for varied operating conditions was measured by the stimulus-response approach.The cavity depth increased with the decrease in the lance height and the increase in the top gas flow rate while the bottom blowing gas had little influence on the cavity depth.The minimum cavity depth was obtained under the condition of a 69.8 m^(3)/h top gas flow rate,a 287.5 mm lance height and a 0.93 m^(3)/h bottom blowing gas flow rate,which was 161.2 mm.The mixing time decreased as the lance height decreased and the top blowing gas flow rate increased.The mixing time was first decreased and then increased with the increase in the bottom gas flow rate.With the condition of 69.8 m^(3)/h gas flow rate of top blowing,the 287.5 mm lance height and the 0.93 m^(3)/h gas flow rate of bottom blowing,the mixing time in the converter was 48.65 s.The empirical formula between the stirring power and the mixing time in the converter was calculated.
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
基金cosupported by the National Natural Science Foundation of China(No.12202487)。
文摘The modeling of turbulence,especially the high-speed compressible turbulence encountered in aerospace engineering,has always being a significant challenge in terms of balancing efficiency and accuracy.Most traditional models typically show limitations in universality,accuracy,and reliance on past experience.The stochastic multi-scale models show great potential in addressing these issues by representing turbulence across all characteristic scales in a reduced-dimensional space,maintaining sufficient accuracy while reducing computational cost.This review systematically summarizes advances in methods related to a widely used and refined stochastic multi-scale model,the One-Dimensional Turbulence(ODT).The advancements in formulations are emphasized for stand-alone incompressible ODT models,stand-alone compressible ODT models,and coupling methods.Some diagrams are also provided to facilitate more readers to understand the ODT methods.Subsequently,the significant developments and applications of stand-alone ODT models and coupling methods are introduced and critically evaluated.Despite the extensively recognized effectiveness of ODT models in low-speed turbulent flows,it is crucial to emphasize that there is still a research gap in the field of ODT coupling methods that are capable of accurately and efficiently simulating complex,three-dimensional,high-speed compressible turbulent flows up to now.Based on an analysis of the advantages and limitations of existing ODT methods,the recent advancement in the conservative compressible ODT model is considered to have provided a promising approach to tackle the modeling challenges of high-speed compressible turbulence.Therefore,this review outlines several recommended new research subjects and challenging issues to inspire further research in simulating complex,three-dimensional,high-speed compressible turbulent flows using ODT models.
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
文摘The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.
文摘Objective:To explore an intervention strategy for patients with fluid overload undergoing maintenance hemodialysis and to evaluate the effects of the LEARNS model on improving self-care agency and patient compliance.Methods:A total of 76 patients with fluid overload undergoing maintenance hemodialysis at our hospital from March 2023 to March 2024 were selected for the study.Patients were randomly divided into two groups,with 38 in each group.The control group received conventional interventions,while the observation group was treated using the LEARNS model.Self-care agency,compliance,and quality of life outcomes in both groups were analyzed and compared.Results:Before the intervention,no statistically significant differences were observed in the self-care agency scores between the two groups(P>0.05).After the intervention,patients’self-care agency improved significantly,with the observation group showing notably higher scores than the control group(P<0.05).Patient compliance in the observation group was also significantly higher than in the control group(P<0.05).Quality of life,assessed using the SF-36 scale,showed no significant differences between the two groups prior to intervention(P>0.05).After the intervention,quality of life scores improved significantly in both groups,with the observation group exhibiting significantly higher scores than the control group(P<0.05).Conclusion:The LEARNS model is effective in improving patient compliance,enhancing self-care agency,and improving quality of life in maintenance hemodialysis patients with fluid overload,making it a promising approach for broader application.
文摘This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a thermal balance was established for the heat transfer fluid, the absorber and the glass. This allowed us to establish an equation system whose resolution was done by the finite difference method. Then, a computer program was developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. The numerical resolution made it possible to obtain the temperatures of the heat transfer fluid, the absorber and the glass. The simulation of the fluid heating process was done in one-hour time steps, from six in the morning to six in the afternoon. The results obtained show that the temperature difference between the inlet and the outlet of the sensor is very significant. These results obtained, regarding the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors, allow for the improvement of the performances of our prototype.
基金support of the National Natural Science Foundation of China(Grant Nos.42377179,U22A20595,12202463).
文摘Accurately characterizing the pore structure of Tamusu mudstone and simulating fluid flow within it are crucial for assessing underground disposal of high-level radioactive waste(HLW)in this formation.Modeling mudstone presents challenges due to its multiscale pore structure and the necessity that accounts for the effects of high clay content.A method for constructing a dual-scale pore network model(PNM)for the Tamusu mudstone,which considers the hydrological expansion of clays,was proposed.This model integrates N2 adsorption data with focused ion beam/scanning electron microscopy(FIB/SEM)images and labels pores based on clay content.Simulations of single-phase flow were conducted to validate the proposed model.Additionally,the influences of cell number,connectivity,slip effects,and clay minerals on permeability were examined.The findings indicate that a configuration of 45×45×45 cells adequately represents the model.The permeability of the Tamusu mudstone,about 1020 m^(2),aligns with the experimental values.During the simulation,Knudsen diffusion is considered.Factors such as increased roughness,tortuosity,clay content,and water film thickness decrease the permeability,whereas increased connectivity enhances permeability.In the model,numerical coordination numbers 2 and 3 are deemed suitable for the Tamusu mudstone.The proposed model is effective as a tool for constructing and simulating fluid flow in the Tamusu mudstone.
基金funded by Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2024/TK10/UKM/02/7).
文摘This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer significant advantages for urban wind applications,such as omnidirectional wind capture and a compact,ground-accessible design,they face substantial aerodynamic challenges,including dynamic stall,blade-wake interactions,and continuously varying angles of attack throughout their rotation.The review critically evaluates how CFD has been leveraged to address these challenges,detailing the modelling frameworks,simulation setups,mesh strategies,turbulence models,and boundary condition treatments adopted in the literature.Special attention is given to the comparative performance of 2-D vs.3-D simulations,static and dynamic meshing techniques(sliding,overset,morphing),and the impact of near-wall resolution on prediction fidelity.Moreover,this review maps the evolution of CFD tools in capturing key performance indicators including power coefficient,torque,flow separation,and wake dynamics,while highlighting both achievements and current limitations.The synthesis of studies reveals best practices,identifies gaps in simulation fidelity and validation strategies,and outlines critical directions for future research,particularly in high-fidelity modelling and cost-effective simulation of urban-scale VAWTs.By synthesizing insights from over a hundred referenced studies,this review serves as a consolidated resource to advance VAWT design and performance optimization through CFD.These include studies on various aspects such as blade geometry refinement,turbulence modeling,wake interaction mitigation,tip-loss reduction,dynamic stall control,and other aerodynamic and structural improvements.This,in turn,supports their broader integration into sustainable energy systems.
基金supported by the National Natural Science Foundation of China(Grant No.41872219).
文摘The Xingyuan large fluorite deposit in Fengning,Hebei Province,China,is a significant deposit in the North Hebei-West Liaoning fluorite mineralization belt.The ore bodies are structurally controlled and occur in fault zones near granitic porphyry veins.Previous studies have focused on the geology and ore-controlling factors,whereas the general features of the hydrothermal systems that contributed to the formation of the deposit remain unclear.This study investigated the nature,origin,and evolution of mineralizing fluids in the Fengning deposit,based on fluid inclusion and H-O isotope data.The fluid inclusions in fluorite are mostly H2O-rich,gas-liquid,two-phase inclusions,along with a few three-phase inclusions containing halite daughter crystals and CO_(2)gas.The ore-forming fluid was variable in homogenization temperature(108-388°C),salinity(0.2-47.4 wt%NaCl equivalent),and density(0.58-1.11 g/cm^(3)),which indicate it was a H2O-NaCl-CO_(2)system of moderate-low temperature,low salinity,and low density.Fluorite H-O isotopes(δD_(V-SMOW)=−123.5‰to−111.8‰;δ^(18)O_(V-SMOW)=−10.3‰to−6.5‰),temperature data,and fluid compositions indicate the mineralizing fluid was initially dominated by magmatic waters,but then experienced a large influx of meteoric waters.The fluid temperature and salinity decreased and the density increased from the early to late stages of mineralization.The main mechanisms of fluorite precipitation were water-rock reactions and fluid cooling.The Xingyuan fluorite deposit is a post-magmatic hydrothermal deposit.