In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included i...In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs,with a particular focus on the Paleozoic reservoirs in the ...This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs,with a particular focus on the Paleozoic reservoirs in the Qingshimao Gas Field.Using CT scans of natural core samples,a three-dimensional digital core was constructed.The maximum ball method was applied to extract a related pore network model,and the pore structure characteristics of the core samples,such as pore radius,throat radius,pore volume,and coordination number,were quantitatively evaluated.The analysis revealed a normally distributed pore radius,suggesting a high degree of reservoir homogeneity and favorable conditions for a connected pore system.However,it was found that the majority of throat radii measured less than 1μm,which severely restricted fluid flow and diminished permeability.Over 50%of the pores measured under 100μm^(3),further constraining fluid movement.Additionally,30%-50%of the pore network was composed of isolated and blind-end pores,which significantly impaired formation connectivity and reduced permeability.Based on this,the lattice Boltzmann method(LBM)was used for pore-scale flow simulation to investigate the influence mechanism of pore structure characteristics and dynamic-static parameters such as displacement pressure difference on the permeability performance of the considered tight sandstone reservoirs for various pressure gradients(0.1,1,and 10 MPa).The simulations revealed a strong relationship between pressure differential and both the number of streamlines and flow path tortuosity.When the pressure differential increased to 1 MPa,30 streamlines were observed,with a tortuosity factor of 1.5,indicating the opening of additional seepage channels and the creation of increasingly winding flow paths.展开更多
Microbially induced calcium carbonate precipitation(MICP)technology can induce calcium carbonate crystals with cementation and stable performance in the process of microbial metabolism or enzymization through the regu...Microbially induced calcium carbonate precipitation(MICP)technology can induce calcium carbonate crystals with cementation and stable performance in the process of microbial metabolism or enzymization through the regulation of environmental factors MICP can be used as a cementing agent to cement cohesionless sand particles to form the materials with the characteristics of higher strength,better durability and environmental friendli-ness,as well as a good engineering application prospect.In this paper,the shear strength of sand column was tested by triaxial compression tests,and the strength index was obtained.In order to further study the micro-strength mechanism and the failure process,based on the discrete element method,a numerical model of MICP cemented sand column was established considering the factors of matrix soil particle gradation,particle mor-phology,content ratio of induced calcium carbonate,pore distribution characteristics,inter-particle cementation and so on.The failure process of MICP cemented sand column under load was analysed by numerical simulation,and the reliability of the numerical model was tested by combining with the stress intensity curve of samples under test conditions.The results indicate that compared with the actual triaxial tests of MICP cemented sand column,although there are deviations in stress and strain,cohesion and internal friction angle,the numerical simulation shows similar development law and intensity amplitude,and the same failure trend.The work in this paper verifies the reliability of the numerical model and provides a theoretical basis for the subsequent analysis of the factors influencing the geotechnical mechanical properties of biomineralized materials.展开更多
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relativ...Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carr...The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.展开更多
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte...There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.展开更多
Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity ...Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity numerical simulation data.This presents a significant challenge because the sole source of authentic wellbore production data for training is sparse.In response to this challenge,this work introduces a novel architecture called physics-informed neural network based on domain decomposition(PINN-DD),aiming to effectively utilize the sparse production data of wells for reservoir simulation with large-scale systems.To harness the capabilities of physics-informed neural networks(PINNs)in handling small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse labeled data,the computational domain is divided into two distinct sub-domains:the well-containing and the well-free sub-domain.Moreover,the two sub-domains and the interface are rigorously constrained by the governing equations,data matching,and boundary conditions.The accuracy of the proposed method is evaluated on two problems,and its performance is compared against state-of-the-art PINNs through numerical analysis as a benchmark.The results demonstrate the superiority of PINN-DD in handling large-scale reservoir simulation with limited data and show its potential to outperform conventional PINNs in such scenarios.展开更多
Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster managem...Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows.展开更多
The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,igno...The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,ignoring the influence of multiple motion units and the differences in various features among them,which strongly affect the efficiency and accuracy of the simulations.In this study,we constructed a flow field fusion simulation method based on model features by combining key motion unit analysis and various simulation methods and then applied the method to the CRDM simulation process.CRDM performs motion unit decomposition through the structural hierarchy of function-movement-action method,and the key meta-actions are identified as the nodes in the flow field simulation.We established a fused feature-based multimethod simulation process and processed the simulation methods and data according to the features of the fluid domain space and the structural complexity to obtain the fusion simulation results.Compared to traditional simulation methods and real measurements,the simulation method provides advantages in terms of simulation efficiency and accuracy.展开更多
Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-...Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal fevel was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton's second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.展开更多
With the rudder angles getting larger and larger,the moment and force on propeller shafts,which are caused by complex flowing field,become more and more.They influence the shafting alignment greatly.Stress analysis of...With the rudder angles getting larger and larger,the moment and force on propeller shafts,which are caused by complex flowing field,become more and more.They influence the shafting alignment greatly.Stress analysis of propeller shafts has been done under increasing rudder corner conditions with complex hydrodynamics simulation for a great domestic liquified natural gas(LNG) vessel,which is with dual propulsion systems.The improved three-moment equation is adopted in the process of dual propulsive shafting alignment.The calculated results show that the propeller hydrodynamic characteristics,which affect dual propulsive shafting alignment greatly,must be considered under large rudder angle conditions.Shafting accidents of Korean LNG vessels are interpreted reasonably.At the same time,salutary lessons and references are afforded to the marine multi-propulsion shafting alignment in the future.展开更多
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ...A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.展开更多
The expressway traffc incidents have the characteristics of high harmful, strong destructive and refractory.Incident detection can guarantee smooth operation of the expressway, reduce traffc congestion and avoid secon...The expressway traffc incidents have the characteristics of high harmful, strong destructive and refractory.Incident detection can guarantee smooth operation of the expressway, reduce traffc congestion and avoid secondary accident by informing the accident, detection and treatment timely. In this paper, an incident detection method is proposed using the toll station data that takes into account the traffc ratio at the entrances and crossway in the network. The expressway traffc simulation model is improved and a simulation algorithm is established to describe the movement of the vehicles. A numerical example is experimented on the expressway network of Shandong province. The proposed method can effectively detect the expressway incidents, and dynamically estimate the traffc network states so as to provide advice for the highway management department.展开更多
Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the paramete...Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.51303027 and 11172271)the Scientific Research Staring Foundation,Fujian University of Technology of China(No.GY-Z13028)+1 种基金the Research Fund of Fujian Education Department(No.JA11189)the Research Fund for Enterprise Technology Innovation(No.2011-702-04)
文摘In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
文摘This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs,with a particular focus on the Paleozoic reservoirs in the Qingshimao Gas Field.Using CT scans of natural core samples,a three-dimensional digital core was constructed.The maximum ball method was applied to extract a related pore network model,and the pore structure characteristics of the core samples,such as pore radius,throat radius,pore volume,and coordination number,were quantitatively evaluated.The analysis revealed a normally distributed pore radius,suggesting a high degree of reservoir homogeneity and favorable conditions for a connected pore system.However,it was found that the majority of throat radii measured less than 1μm,which severely restricted fluid flow and diminished permeability.Over 50%of the pores measured under 100μm^(3),further constraining fluid movement.Additionally,30%-50%of the pore network was composed of isolated and blind-end pores,which significantly impaired formation connectivity and reduced permeability.Based on this,the lattice Boltzmann method(LBM)was used for pore-scale flow simulation to investigate the influence mechanism of pore structure characteristics and dynamic-static parameters such as displacement pressure difference on the permeability performance of the considered tight sandstone reservoirs for various pressure gradients(0.1,1,and 10 MPa).The simulations revealed a strong relationship between pressure differential and both the number of streamlines and flow path tortuosity.When the pressure differential increased to 1 MPa,30 streamlines were observed,with a tortuosity factor of 1.5,indicating the opening of additional seepage channels and the creation of increasingly winding flow paths.
基金sponsored by the National Natural Science Foundation of China(Grant No.12002173,12262027)Research start-up project of Inner Mongolia University of Technology(No.2200000924)key Lab.of University of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions,Inner Mongolia Autonomous.
文摘Microbially induced calcium carbonate precipitation(MICP)technology can induce calcium carbonate crystals with cementation and stable performance in the process of microbial metabolism or enzymization through the regulation of environmental factors MICP can be used as a cementing agent to cement cohesionless sand particles to form the materials with the characteristics of higher strength,better durability and environmental friendli-ness,as well as a good engineering application prospect.In this paper,the shear strength of sand column was tested by triaxial compression tests,and the strength index was obtained.In order to further study the micro-strength mechanism and the failure process,based on the discrete element method,a numerical model of MICP cemented sand column was established considering the factors of matrix soil particle gradation,particle mor-phology,content ratio of induced calcium carbonate,pore distribution characteristics,inter-particle cementation and so on.The failure process of MICP cemented sand column under load was analysed by numerical simulation,and the reliability of the numerical model was tested by combining with the stress intensity curve of samples under test conditions.The results indicate that compared with the actual triaxial tests of MICP cemented sand column,although there are deviations in stress and strain,cohesion and internal friction angle,the numerical simulation shows similar development law and intensity amplitude,and the same failure trend.The work in this paper verifies the reliability of the numerical model and provides a theoretical basis for the subsequent analysis of the factors influencing the geotechnical mechanical properties of biomineralized materials.
基金the National Natural Science Foundation of China (No.50576088), the Natural Science Foundation of Zhejiang Province (No.R503170) and the Doctoral Program Foundation of Ministry of Education (No.20030335009).
文摘Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.
基金financially supported by the National Key Research and Development Plan(No.2018YFB0605601)the National Natural Science Foundation of China(No.41972168)。
文摘The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.
基金funded by the National Natural Science Foundation of China(Grant No.52274048)Beijing Natural Science Foundation(Grant No.3222037)+1 种基金the CNPC 14th Five-Year Perspective Fundamental Research Project(Grant No.2021DJ2104)the Science Foundation of China University of Petroleum-Beijing(No.2462021YXZZ010).
文摘Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity numerical simulation data.This presents a significant challenge because the sole source of authentic wellbore production data for training is sparse.In response to this challenge,this work introduces a novel architecture called physics-informed neural network based on domain decomposition(PINN-DD),aiming to effectively utilize the sparse production data of wells for reservoir simulation with large-scale systems.To harness the capabilities of physics-informed neural networks(PINNs)in handling small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse labeled data,the computational domain is divided into two distinct sub-domains:the well-containing and the well-free sub-domain.Moreover,the two sub-domains and the interface are rigorously constrained by the governing equations,data matching,and boundary conditions.The accuracy of the proposed method is evaluated on two problems,and its performance is compared against state-of-the-art PINNs through numerical analysis as a benchmark.The results demonstrate the superiority of PINN-DD in handling large-scale reservoir simulation with limited data and show its potential to outperform conventional PINNs in such scenarios.
基金financially supported by Department of Space,India(Grant No.ISRO/RES/4/663/18-19)。
文摘Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows.
基金supported by the National Natural Science Foundation of China (No. 52075350)the Special City School Strategic Cooperation Project of Sichuan University and Zigong (No.2021CDZG-3)
文摘The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,ignoring the influence of multiple motion units and the differences in various features among them,which strongly affect the efficiency and accuracy of the simulations.In this study,we constructed a flow field fusion simulation method based on model features by combining key motion unit analysis and various simulation methods and then applied the method to the CRDM simulation process.CRDM performs motion unit decomposition through the structural hierarchy of function-movement-action method,and the key meta-actions are identified as the nodes in the flow field simulation.We established a fused feature-based multimethod simulation process and processed the simulation methods and data according to the features of the fluid domain space and the structural complexity to obtain the fusion simulation results.Compared to traditional simulation methods and real measurements,the simulation method provides advantages in terms of simulation efficiency and accuracy.
基金supported by the National Key Technologies R&D Program of China for the Eleventh Five-Year Plan Period (Grant No. 2008BAB29B08-02)the Program for the Ministry of Education and State Administration of Foreign Experts Affairs of China (Grant No. B08408)
文摘Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal fevel was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton's second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.
基金the National Natural Science Foundation of China (Nos.50979058 and 51109131)the Simulation and Research Fund of Vessel Reducing Vibration with Stochastic Vibration Influence(No.J10LG60)
文摘With the rudder angles getting larger and larger,the moment and force on propeller shafts,which are caused by complex flowing field,become more and more.They influence the shafting alignment greatly.Stress analysis of propeller shafts has been done under increasing rudder corner conditions with complex hydrodynamics simulation for a great domestic liquified natural gas(LNG) vessel,which is with dual propulsion systems.The improved three-moment equation is adopted in the process of dual propulsive shafting alignment.The calculated results show that the propeller hydrodynamic characteristics,which affect dual propulsive shafting alignment greatly,must be considered under large rudder angle conditions.Shafting accidents of Korean LNG vessels are interpreted reasonably.At the same time,salutary lessons and references are afforded to the marine multi-propulsion shafting alignment in the future.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No. 20110095120004)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485)
文摘A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.
基金Supported by the National Natural Science Foundation of China under Grant Nos.71871130,71471104,71771019,71571109the University Science and Technology Program Funding Projects of Shandong Province under Grant No.J17KA211the Project of Public Security Department of Shandong Province under Grant No.GATHT2015-236
文摘The expressway traffc incidents have the characteristics of high harmful, strong destructive and refractory.Incident detection can guarantee smooth operation of the expressway, reduce traffc congestion and avoid secondary accident by informing the accident, detection and treatment timely. In this paper, an incident detection method is proposed using the toll station data that takes into account the traffc ratio at the entrances and crossway in the network. The expressway traffc simulation model is improved and a simulation algorithm is established to describe the movement of the vehicles. A numerical example is experimented on the expressway network of Shandong province. The proposed method can effectively detect the expressway incidents, and dynamically estimate the traffc network states so as to provide advice for the highway management department.
基金supported by the Chinese Jiangsu Provincial Natural Science Foundation (Grant No. BK2001017)
文摘Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.