Objective To investigate the difference in interictal perfusion patterns between refractory and non-refractory temporal lobe epilepsies evaluated with flow-sensitive alternating inversion recovery (FAIR) magnetic reso...Objective To investigate the difference in interictal perfusion patterns between refractory and non-refractory temporal lobe epilepsies evaluated with flow-sensitive alternating inversion recovery (FAIR) magnetic resonance (MR) sequence. Methods Nine patients with refractory temporal lobe epilepsy, 21 patients with non-refractory temporal lobe epilepsy, and 13 normal volunteers underwent FAIR MR scanning. The relative cerebral blood flow (rCBF) in bilateral hemispheres and mesial temporal lobes were measured. And we also calculated the asymmetry index (AI) values. Results The AI values of bilateral hemispheres in refractory and non-refractory epilepsy patients were both significantly different from those of volunteers (P=0.012 and 0.029, respectively). There was significant difference in AI values of bilateral mesial temporal lobes between non-refractory epilepsy patients and volunteers (P=0.049), while no significant difference between refractory epilepsy patients and volunteers. Conclusions The hypoperfusion pattern of interictal refractory temporal lobe epilepsy patients is different from that of non-refractory patients. Although the hypoperfusion tends to extend out of temporal lobes in all patients, the refractory epilepsy patients have a preference of bilateral mesial temporal hypoperfusion, which may be valuable for evaluating prognosis.展开更多
We present a demand-driven approach to memory leak detection algorithm based on flow- and context-sensitive pointer analysis. The detection algorithm firstly assumes the presence of a memory leak at some program point...We present a demand-driven approach to memory leak detection algorithm based on flow- and context-sensitive pointer analysis. The detection algorithm firstly assumes the presence of a memory leak at some program point and then runs a backward analysis to see if this assumption can be disproved. Our algorithm computes the memory abstraction of programs based on points-to graph resulting from flow- and context-sensitive pointer analysis. We have implemented the algorithm in the SUIF2 compiler infrastructure and used the implementation to analyze a set of C benchmark programs. The experimental results show that the approach has better precision with satisfied scalability as expected.展开更多
文摘Objective To investigate the difference in interictal perfusion patterns between refractory and non-refractory temporal lobe epilepsies evaluated with flow-sensitive alternating inversion recovery (FAIR) magnetic resonance (MR) sequence. Methods Nine patients with refractory temporal lobe epilepsy, 21 patients with non-refractory temporal lobe epilepsy, and 13 normal volunteers underwent FAIR MR scanning. The relative cerebral blood flow (rCBF) in bilateral hemispheres and mesial temporal lobes were measured. And we also calculated the asymmetry index (AI) values. Results The AI values of bilateral hemispheres in refractory and non-refractory epilepsy patients were both significantly different from those of volunteers (P=0.012 and 0.029, respectively). There was significant difference in AI values of bilateral mesial temporal lobes between non-refractory epilepsy patients and volunteers (P=0.049), while no significant difference between refractory epilepsy patients and volunteers. Conclusions The hypoperfusion pattern of interictal refractory temporal lobe epilepsy patients is different from that of non-refractory patients. Although the hypoperfusion tends to extend out of temporal lobes in all patients, the refractory epilepsy patients have a preference of bilateral mesial temporal hypoperfusion, which may be valuable for evaluating prognosis.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60725206, 60673118, and 90612009the National High-Tech Research and Development 863 Program of China under Grant No. 2006AA01Z429+2 种基金the National Basic Research 973 Program of China under Grant No. 2005CB321802the Program for New Century Excellent Talents in University under Grant No.NCET-04-0996the Hunan Natural Science Foundation under Grant No. 07JJ1011
文摘We present a demand-driven approach to memory leak detection algorithm based on flow- and context-sensitive pointer analysis. The detection algorithm firstly assumes the presence of a memory leak at some program point and then runs a backward analysis to see if this assumption can be disproved. Our algorithm computes the memory abstraction of programs based on points-to graph resulting from flow- and context-sensitive pointer analysis. We have implemented the algorithm in the SUIF2 compiler infrastructure and used the implementation to analyze a set of C benchmark programs. The experimental results show that the approach has better precision with satisfied scalability as expected.