期刊文献+
共找到229,766篇文章
< 1 2 250 >
每页显示 20 50 100
The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge 被引量:1
1
作者 K.Subbarayudu S.Suneetha P.Bala Anki Reddy 《Propulsion and Power Research》 SCIE 2020年第1期87-99,共13页
The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic Williamson fluid model.Assuming the flow is unsteady and blood is treated as Williamson fluid over a we... The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic Williamson fluid model.Assuming the flow is unsteady and blood is treated as Williamson fluid over a wedge with radiation.The governing equations are transformed into ordinary differential equations by using similarity variables.The analytical solutions of the transformed governing equations are obtained by using the RK 4th order method along with shooting technique solver.The effects of various physical parameters such as Hartmann number,local Weissenberg number,radiation parameter,unsteadiness parameter,Prandtl number,Lewis number,Brownian diffusion,thermophoresis,wedge angle parameter,moving wedge parameter,on velocity,temperature,concentration,skin friction,heat transfer rate and mass transfer rate have been discussed in detail.The velocity and temperature profile deprives for larger We and an opposite trend is observed for concentration.The radiation parameter is propositional to temperature and a counter behaviour is observed for Pr. 展开更多
关键词 The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic WILLIAMSON fluid model. Assuming the flow IS unsteady and blood IS treated as WILLIAMSON fluid over a WEDGE with radiation. The governing EQUATIONS are transformed into ordinary differential EQUATIONS by using similarity variables. The analytical solutions of the transformed governing EQUATIONS are obtained by using the RK 4th order method along with shooting technique solver. The effects of various physical parameters such as Hartmann NUMBER local Weissenberg NUMBER radiation PARAMETER unsteadiness PARAMETER Prandtl NUMBER Lewis NUMBER Brownian diffusion thermophoresis WEDGE angle PARAMETER moving WEDGE PARAMETER on velocity temperature concentration skin friction heat transfer rate and mass transfer rate have been discussed in detail. The velocity and temperature profile deprives for larger We and an opposite trend IS observed for concentration. The radiation PARAMETER IS propositional to temperature and a counter behaviour IS observed for Pr.
原文传递
Flow-Induced Stream-Wise Vibration of Circular Cylinders
2
作者 Atsushi Okajima Takahiro Kiwata 《Journal of Flow Control, Measurement & Visualization》 2019年第3期133-151,共19页
Results from a series of studies on the stream-wise vibration of a circular cylinder verifying Japan Society of Mechanical Engineers Standard S012-1998, Guideline for Evaluation of Flow-induced Vibration of a Cylindri... Results from a series of studies on the stream-wise vibration of a circular cylinder verifying Japan Society of Mechanical Engineers Standard S012-1998, Guideline for Evaluation of Flow-induced Vibration of a Cylindrical Structure in a Pipe, are summarized and discussed in this paper. Experiments were carried out in a water tunnel and in a wind tunnel using a two-dimensional cylinder model elastically supported at both ends of the cylinder and a cantilevered cylinder model with a finite span length that was elastically supported at one end. These cylinder models were allowed to vibrate with one degree of freedom in the stream-wise direction. In addition, we adopted a cantilevered cylinder model that vibrated with two degrees of freedom in both the stream-wise and cross-flow directions under the same vibration conditions as an actual thermocouple well. The value of the Scruton number (structural damping parameter) was changed over a wide range, so as to evaluate the value of the critical Scruton number that suppressed vibration of the cylinder. For the two-dimensional cylinder, two different types of stream-wise excitations appeared in the reduced velocity range of approximately half of the resonance-reduced velocity. For the stream-wise vibration in the first excitation region, due to a symmetric vortex flow, the response amplitudes were sensitive to the Scruton number, while the shedding frequency of alternating vortex flow was locked-in to half of the Strouhal number of vibrating frequency of a cylinder in the second excitation region. In addition, the effects of the aspect ratio of a cantilevered cylinder on the flow-induced vibration characteristics were clarified and compared with the results of a two-dimensional cylinder. When a cantilevered circular cylinder with a finite length vibrates with one degree of freedom in the stream-wise di-rection, it is found that acylinder with a small aspect ratio has a single excitation region, whereas a cylinder with a large aspect ratio has two excitation regions. Furthermore, the vibration mechanism of a symmetric vortex flow was investigated by installing a splitter plate in the wake to prevent shedding of alternating vortices. The vibration amplitude of acylinder with a splitter plate increased surprisingly more than the amplitude of a cylinder without a splitter plate. For a cantilevered cylinder vibrating with two degrees of freedom, the Lissajous figure of vibration of the first excitation region shows the trajectories of elongated elliptical shapes, and in the second excitation region, the Lissajous trajectories draw a figure “8”. The results and information from these experimental studies proved that Standard S012-1998 provides sufficient design methods for suppressing hazardous vibrations of cylinders in liquid flows. 展开更多
关键词 flow-Induced VIBRATION flow Visualization Bluff Body Circular Cylinder Scruton Number Finite Spanlength ASPECT Ratio Stream-Wise VIBRATION CROSS-flow VIBRATION One and Two Degrees of FREEDOM
在线阅读 下载PDF
A Mathematical Model for Magnetohydrodynamic Convection Flow in a Rotating Horizontal Channel with Inclined Magnetic Field, Magnetic Induction and Hall Current Effects
3
作者 Swapan Kumar Ghosh Osman Anwar Bég Abdul Aziz 《World Journal of Mechanics》 2011年第3期137-154,共18页
Closed-form and asymptotic solutions are derived for the steady, fully-developed hydromagnetic free and forced convection flow in a rotating horizontal parallel-plate channel under the action of an inclined magnetic f... Closed-form and asymptotic solutions are derived for the steady, fully-developed hydromagnetic free and forced convection flow in a rotating horizontal parallel-plate channel under the action of an inclined magnetic field and constant pressure gradient along the longitudinal axis of the channel. The magnetic field is strong enough to generate Hall current effects and the magnetic Reynolds number of sufficient magnitude that induced magnetic field effects are also present. Secondary flow is present owing to the Hall current effect. The channel plates are also taken to be electrically-conducting. The conservation equations are formulated in an (x, y, z) coordinate system and non-dimensionalized using appropriate transformations. The resulting non-dimensional coupled ordinary differential equations for primary and secondary velocity components and primary and secondary induced magnetic field components and transformed boundary conditions are shown to be controlled by the dimensionless pressure gradient parameter (px), Hartmann number (M2), Grashof number (G), Hall current parameter (m), rotational parameter (K2), magnetic field inclination (&#920), and the electrical conductance ratios of the upper (&#9201) and lower (&#9202) plates. Solutions are derived using the method of complex variables. Asymptotic solutions are also presented for very high rotation parameter and Hartmann number of order equal to unity, for which Ekman-Hartmann boundary layers are identified at the plates. A parametric study of the evolution of velocity and induced magnetic field distributions is undertaken. It is shown that generally increasing Hall current effect (m) serves to accentuate the secondary (cross) flow but oppose the primary flow. An increase in rotational parameter (K2) is also found to counteract primary flow intensity. An elevation in the Grashof number i.e. free convection parameter (G) is shown to aid the secondary induced magnetic field component (Hz);however there is a decrease in magnitudes of the primary induced magnetic field component (Hx) with increasing Grashof number. Increasing inclination of the applied magnetic field (&#920, is also found to oppose the primary flow (u1) but conversely to strongly assist the secondary flow (w1). Both critical primary (Gcx) and secondary (Gcz)Grashof numbers are shown to be reduced with increasing inclination of the magnetic field (&#920), increasing Hall parameter (m) and rotational parameter (K2). Applications of the study arise in rotating MHD induction power generators and also astrophysical flows. 展开更多
关键词 HYDROMAGNETIC flow HALL Current Electrical CONDUCTANCE Free And Forced Convection Critical Grashof Number Rotation Complex Variables Asymptotic Analysis Ekman-Hartmann Boundary Layers ASTRONAUTICS
在线阅读 下载PDF
A new constitutive theory for extrusion-extensional flow of anisotropic liquid crystalline polymer fluid
4
作者 Shifang Han 《Natural Science》 2011年第4期307-318,共12页
A new continuum theory of the constitutive equation of co-rotational derivative type was developed by the author for anisotropic viscoelastic fluid-liquid crystalline (LC) polymers (S.F. Han, 2008, 2010) . This paper ... A new continuum theory of the constitutive equation of co-rotational derivative type was developed by the author for anisotropic viscoelastic fluid-liquid crystalline (LC) polymers (S.F. Han, 2008, 2010) . This paper is a continuation of the recent publication [1] to study extrusion-extensional flow of the fluid. A new concept of simple anisotropic fluid is introduced. On the basis of anisotropic simple fluid, stress behavior is described by velocity gradient tensor F and spin tensor W instead of the velocity gradient tensor D in the classic Leslie?Ericksen continuum theory. A special form of the constitutive equation of the co-rotational type is established for the fluid. Using the special form of the constitutive equation in components a computational analytical theory of the extrusion-extensional flow is developed for the LC polymer liquids - anisotropic viscoelastic fluid. Application of the constitutive theory to the flow is successful in predicting bifurcation of elongational viscosity and contraction of extrudate for LC polymer liquids–anisotropic viscoelastic fluid. The contraction of extrudate of LC polymer liquids may be associated with the stored elastic energy conversion into that necessary for bifurcation of elongational viscosity in extrusion extensional flow of the fluid. 展开更多
关键词 Constitutive Equation of Co-Rotational Derivative Type Simple ANISOTROPIC FLUID Liquid Crystalline POLYMER Extrusion-Extensional flow Bifurcation of Elongational Viscosity Contraction of EXTRUDATE of LC POLYMER Liquids
在线阅读 下载PDF
Four-dimensional flow magnetic resonance imaging incirrhosis 被引量:9
5
作者 Zoran Stankovic 《World Journal of Gastroenterology》 SCIE CAS 2016年第1期89-102,共14页
Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential... Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique. 展开更多
关键词 Four-dimensional flow MAGNETIC resonanceimaging Phase contrast-magnetic resonance IMAGING Liver CIRRHOSIS IMAGING technique HEMODYNAMICS Bloodflow Visualization Quantification TIPS SPLANCHNIC system
暂未订购
Pressure Drop of Liquid–Solid Two-Phase Flow in the Vertical Tube Bundle of a Cold-Model Circulating Fluidized Bed Evaporator 被引量:2
6
作者 Feng Jiang Siyao Lv +2 位作者 Guopeng Qi Xiaoling Chen Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第6期618-630,共13页
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr... A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry. 展开更多
关键词 Pressure drop Liquid-solid two-phase flow CIRCULATING fluidized bed EVAPORATOR VERTICAL tube BUNDLE Heat transfer enhancement FOULING prevention DESCALING
在线阅读 下载PDF
Numerical study of transonic separation flow using an anisotropic turbulence model 被引量:1
7
作者 YAN Wenhui PENG Tengfei +2 位作者 YONG Yan QIN Ruixin MA Ruige 《航空动力学报》 EI CAS CSCD 北大核心 2020年第1期114-125,共12页
A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied,when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-inter... A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied,when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-interaction(SWBLI).To capture the essential behavior of this complex flow,the current study utilized an anisotropic turbulence model developed on the basis of a statistical partial average scheme.The first order moment of turbulent fluctuations,retained by a novel average scheme,and the turbulent length scale,can be determined from the momentum equations and mechanical energy equation of the fluctuation flow,respectively.The two physical quantities were readily used to construct the nonlinear anisotropic eddy viscosity tensor and to significantly improve the computational results.Comparisons between the computational results and experimental data were carried out for velocity profiles,pressure distribution,skin friction coefficient,Reynolds stress as well as streamline vectors distribution.Without using any empirical coefficients and wall functions,the numerical results were in good agreement with the available experimental data,further confirming that the nonlinear anisotropic eddy viscosity tensor is the decisive factor for the success of the computational results. 展开更多
关键词 TRANSONIC SEPARATION flow EDDY viscosity TENSOR shock wave boundary layer interaction ANISOTROPIC turbulence model statistical partial average scheme
原文传递
Algebraic Calculation Method of One-Dimensional Steady Compressible Gas Flow
8
作者 Andrey Tolmachev 《Open Journal of Fluid Dynamics》 2017年第1期83-88,共6页
This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elemen... This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elements of a finite size for which mass, energy and momentum conservation laws are written in the integral form, assuming linear distribution of the parameters along the length. As a result, the calculation is reduced to finding the roots of a quadratic algebraic equation, thus providing an alternative to numerical methods based on differential equations. The advantage of this method is its high tolerance to coarse discretization of the calculation area as well as its good applicability for transonic flow calculations. 展开更多
关键词 Method of Calculation STEADY COMPRESSIBLE flow Channel with Perforated Sidewalls Heat and Mass EXCHANGE FINITE Size Elements ONE-DIMENSIONAL Approach
在线阅读 下载PDF
Numerical Solution of MHD Flow of Micropolar Fluid with Heat and Mass Transfer towards a Stagnation Point on a Vertical Plate
9
作者 N. T. El-Dabe A. Y. Ghaly +2 位作者 R. R. Rizkallah K. M. Ewis A. S. Al-Bareda 《American Journal of Computational Mathematics》 2015年第2期158-174,共17页
The paper investigates the numerical solution of problem of magnetohydrodynamic (MHD) micropolar fluid flow with heat and mass transfer towards a stagnation point on a vertical plate. In this study, we consider both s... The paper investigates the numerical solution of problem of magnetohydrodynamic (MHD) micropolar fluid flow with heat and mass transfer towards a stagnation point on a vertical plate. In this study, we consider both strong concentrations (n = 0) and weak concentrations (n = 1/2). The governing equations have been transformed into nonlinear ordinary differential equations by applying the similarity transformation and have been solved numerically by using the finite difference method (FDM) and analytically by using (DTM). The effects of various governing parameters, namely, material parameter, radiation parameter, magnetic parameter, Prandtl number, Schmidt number, chemical reaction parameter and Soret number on the velocity, microrotation, temperature and concentration have been computed and discussed in detail through some figures and tables. In order to verify the accuracy of the present results, we have compared these results with the analytical solutions by using the differential transform method (DTM) and the multi-step differential transform method (MDTM). It is observed that this approximate numerical solution is in good agreement with the analytical solution. 展开更多
关键词 Finite Difference METHOD (FDM) Differential Transform METHOD (DTM) MICROPOLAR Fluid MHD Heat and Mass Transfer STAGNATION flow Chemical Reaction Radiation
在线阅读 下载PDF
The Construction Method for Solving Radial Flow Problem through the Homogeneous Reservoir 被引量:5
10
作者 Shunchu Li Wei Li +1 位作者 Xiaoping Li Li Xu 《Applied Mathematics》 2012年第6期517-522,共6页
On the basis of similar structure of solutions of ordinary differential equation (ODE) boundary value problem, the similar construction method was put forward by solving problems of fluid flow in porous media through ... On the basis of similar structure of solutions of ordinary differential equation (ODE) boundary value problem, the similar construction method was put forward by solving problems of fluid flow in porous media through the homogeneous reservoir. It is indicate that the pressure distribution of dimensionless reservoir and bottom hole in Laplace space, which take on the radial flow, also shows similar structure, and the internal relationship between the above solutions were illustrated in detail. 展开更多
关键词 Differential Equation Fluid flow in Porous Media BOUNDARY Value PROBLEM Construction Method Similar Structure RADIAL flow HOMOGENEOUS RESERVOIR
在线阅读 下载PDF
Trans-Thoracic Echocardiographic Aortic Blood Flow Peak Velocity Variation, Distance Minute, Aortic Velocity Time Integral and Postoperative Outcome in Pediatric Surgical Patients—An Observational Pilot Study Protocol 被引量:1
11
作者 Claudine Kumba 《Open Journal of Internal Medicine》 2020年第1期90-95,共6页
Background: A Randomized Controlled Trial (RCT) has been elaborated where goal directed fluid and hemodynamic therapy (GDFHT) will be realized with trans-thoracic echocardiographic aortic blood flow peak velocity vari... Background: A Randomized Controlled Trial (RCT) has been elaborated where goal directed fluid and hemodynamic therapy (GDFHT) will be realized with trans-thoracic echocardiographic aortic blood flow peak velocity variation (ΔVpeak) and distance minute (DM) to guide fluid therapy and hemodynamics in high risk pediatric surgical patients. This RCT will clarify the impact of GDFHT with ΔVpeak and DM on postoperative outcome in terms of morbidity, length of stay in the intensive care unit (LOSICU), length of mechanical ventilation (LMV) and length of hospital stay (LOS) in children. To determine values of ΔVpeak, DM and VTI predictive of these postoperative outcomes, an observational pilot study will be realized. This pilot study is described here. The primary objective of this study is to determine values of ΔVpeak, DM and ITV predictive of postoperative outcome in children in terms of morbidity. The secondary objectives are to determine values of ΔVpeak, DM and ITV predictive of LOSICU, LMV, LOS, intraoperative, postoperative fluid administration and vasoactive-inotropic therapy. Methods: 500 - 1000 children aged less than 18 years will be included prospectively. Statistic analysis will be realized with XLSTAT 2019.4.2 software or plus. Results and Conclusions: This trial protocol will determine values of ΔVpeak, DM and ITV with echocardiography predictive of postoperative outcome in children. 展开更多
关键词 Children AORTIC Blood flow Peak VELOCITY Variation AORTIC VELOCITY Time INTEGRAL Distance MINUTE Postoperative Outcome Pilot Study Protocol Trans-Thoracic Echocardiography
在线阅读 下载PDF
A Thermal-Hydraulic Coolant Channel Module (CCM) for Single- and Two-Phase Flow
12
作者 Alois Hoeld 《Applied Mathematics》 2015年第12期2014-2044,共31页
A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Regio... A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Region Mixture Fluid Approach” should yield an alternative platform to the currently dominant “Separate-Phase Models” where each phase is treated separately. Contrary to it, a direct procedure could be established with the objective to simulate in an as general as possible way the steady state and transient behaviour of characteristic parameters of single- and/or (now non-separated) two-phase fluids flowing within any type of heated or non-heated coolant channels. Their validity could be confirmed by a wide range of verification and validation runs, showing very satisfactory results. The resulting universally applicable code package CCM should provide a fundamental element for the simulation of thermal-hydraulic situations over a wide range of complex systems (such as different types of heat exchangers and steam generators as being applied in both conventional but also nuclear power stations, 1D and 3D nuclear reactor cores etc). Thereby the derived set of equations for different coolant channels (distinguished by their key numbers) as appearing in these systems can be combined with other ODE-s and non-linear algebraic relations from additional parts of such an overall model. And these can then to be solved by applying an appropriate integration routine. Within the solution procedure, however, mathematical discontinuities can arise. This due to the fact that along such a coolant channel transitions from single- to two-phase flow regimes and vice versa could take place. To circumvent these difficulties it will in the presented approach be proposed that the basic coolant channel (BC) is subdivided into a number of sub-channels (SC-s), each of them being occupied exclusively by only a single or a two-phase flow regime. After an appropriate nodalization of the BC (and thus its SC-s) and after applying a “modified finite volume method” together with other special activities the fundamental set of non-linear thermal-hydraulic partial differential equations together with corresponding constitutive relations can be solved for each SC separately. As a result of such a spatial discretization for each SC type (and thus the entire BC) the wanted set of non-linear ordinary differential equations of 1st order could be established. Obviously, special attention had to be given to the varying SC entrance or outlet positions, describing the movement of boiling boundaries or mixture levels along the channel. Including even the possibility of SC-s to disappear or be created anew during a transient. 展开更多
关键词 Applied Mathematics NON-LINEAR Partial Differential Equations of First Order THERMAL-HYDRAULICS of Single- and TWO-PHASE flow Separate-Region Mixture-Fluid Model Concept
暂未订购
Sleep Quality for Patients Receiving Noninvasive Positive Pressure Ventilation and Nasal High-Flow Oxygen Therapy in an ICU: Two Case Studies 被引量:1
13
作者 Hiroaki Murata Yoko Yamaguchi 《Open Journal of Nursing》 2018年第9期605-615,共11页
Aim: The purpose of this case study was to examine the sleep quality of patients receiving noninvasive positive pressure ventilation (NPPV) or nasal high-flow oxygen therapy (NHF) in an intensive care unit and to inve... Aim: The purpose of this case study was to examine the sleep quality of patients receiving noninvasive positive pressure ventilation (NPPV) or nasal high-flow oxygen therapy (NHF) in an intensive care unit and to investigate what types of nursing support are offered to such patients. Methods: We examined one patient each for NPPV and NHF. Polysomnography (PSG), review of the patient charts, and semi-structured interviews were used to collect the data for analysis. Results: Patients treated with NPPV or NHF demonstrated a noticeable reduction in deep sleep, with most of their sleep being shallow. Their sleep patterns varied greatly from those of healthy individuals. These results suggest that, in addition to experiencing extremely fragmented sleep, sleep in these patients was more likely to be interrupted by nursing interventions, such as during auscultation of breath sounds. Furthermore, it was revealed that “anxiety or discomfort that accompanies the mask or air pressure” in patients treated with NPPV and “discomfort that accompanies the nasal cannula or NHF circuit” in patients treated with NHF may be primary causes of disrupted sleep. Our results suggest a need for nursing care aimed at improving sleep quality in patients treated with NPPV or NHF. 展开更多
关键词 Noninvasive Positive Pressure Ventilation (NPPV) NASAL High-flow Oxygen Therapy (NHF) Sleep DEPRIVATION ICU Post Intensive Care Syndrome (PICS)
暂未订购
Modeling of Unsteady Flow through Junction in Rectangular Channels: Impact of Model Junction in the Downstream Channel Hydrograph 被引量:2
14
作者 Seidou Kane Soussou Sambou +5 位作者 Issa Leye Raymond Diedhiou Seni Tamba Mouhamed Talla Cisse Didier Maria Ndione Mousse Landing Sane 《Computational Water, Energy, and Environmental Engineering》 2017年第3期304-319,共16页
Open channel junctions are encountered in urban water treatment plants, irrigation and drainage canals, and natural river systems. Junctions are very important in municipal sewerage systems and river engineering. Adeq... Open channel junctions are encountered in urban water treatment plants, irrigation and drainage canals, and natural river systems. Junctions are very important in municipal sewerage systems and river engineering. Adequate theoretical description of flow through an open channel junction is difficult because numerous variables are to be considered. Equations of junction models are based on mass and momentum or mass and energy conservation. The objective of this study is to compare two junction models for subcritical flows. In channel branches, we solve numerically the Saint-Venant hyperbolic system by combining Preissmann scheme and double sweep method. We validate our results with HEC-RAS using Nash and Sutcliffe efficiency. In junction models, equality of water stage and complete energy conservation equation from HEC-RAS are compared. Outcome of the research clearly indicates that the complete conservation energy model is more suitable in flow through junction than equality of water stage model in serious situations. 展开更多
关键词 JUNCTION MODEL HEC RAS Saint-Venants Equations Double SWEEP Method EQUALITY of Water STAGES Energy Conservation Modelling of flow
暂未订购
Analysis of Nonlinear Stochastic Systems with Jumps Generated by Erlang Flow of Events
15
作者 Alexander S. Kozhevnikov Konstantin A. Rybakov 《Open Journal of Applied Sciences》 2013年第1期1-7,共7页
In this paper we consider the stochastic systems with jumps (random impulses) generated by Erlang flow of events that lead to discontinuities in paths. These systems may be used in various applications such as a contr... In this paper we consider the stochastic systems with jumps (random impulses) generated by Erlang flow of events that lead to discontinuities in paths. These systems may be used in various applications such as a control of complex technical systems, financial mathematics, mathematical biology and medicine. We propose to use a spectral method formalism to the probabilistic analysis problem for the stochastic systems with jumps. This method allows to get a solution of the analysis problem in an explicit form. 展开更多
关键词 ANALYSIS ERLANG flow of EVENTS Generalized Fokker-Planck Equations Random Impulses JUMP-DIFFUSION Process SPECTRAL Characteristic SPECTRAL Method Formalism Stochastic System
在线阅读 下载PDF
Resistance Measured by Airflow Perturbation Compared with Standard Pulmonary Function Measures 被引量:1
16
作者 Tania Haque Jafar Vossoughi +3 位作者 Arthur T. Johnson Wanda Bell-Farrell Thomas Fitzgerald Steven M. Scharf 《Open Journal of Respiratory Diseases》 2013年第2期63-67,共5页
Background: Routine lung function testing requires expensive equipment, or requires maximum expiratory effort. The airflow perturbation device (APD) is a light handheld device, allowing for serial measures of respirat... Background: Routine lung function testing requires expensive equipment, or requires maximum expiratory effort. The airflow perturbation device (APD) is a light handheld device, allowing for serial measures of respiratory resistance noninvasively and effortlessly. Methods: In a convenience sample of 398 patients undergoing pulmonary function testing, we compared routine spirometric indices (forced expired volume in 1 second (FEV1), peak expiratory flow (PEF)), and airways resistance (Raw-272 patients), to measures of respiratory resistance measured with the APD including inspiratory (IR), expiratory (ER) and averaged (AR) resistance. Results: Measures of lung function were significantly correlated (p 0.001). On regression analysis, between 7% - 17% of the variance (R2) for FEV1, PEF, and Raw was explained by APD measurements. Approximately 2/3 of the variance in FEV1 was explained by PEF measurements. Conclusions: APD measurements of lung function correlate with conventional measures. Future studies should be directed at exploring the use of the APD device in serial measures of lung function in patients with lung disease. 展开更多
关键词 AIRflow PERTURBATION Device PULMONARY Function FORCED Expired Volume in 1 Second Peak Expiratory flow AIRWAY RESISTANCE
暂未订购
Generation of Dynamic Grids and Computation of Unsteady Transonic Flows around Assemblies 被引量:6
17
作者 陆志良 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第1期1-5,共5页
Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate f... Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate factorization algorithm and internal Newton iterations. An integral boundary layer method based on the dissipation integral is used to account for viscous effects. The computational results about unsteady transonic forces on wings, bodies and control surfaces are in agreement with experimental data. 展开更多
关键词 ALGEBRA Algorithms Approximation theory Boundary layer flow Computational fluid dynamics Integral equations Iterative methods Newtonian flow Transonic flow Unsteady flow Viscous flow WINGS
在线阅读 下载PDF
A novel unified model predicting flow stress and grain size evolutions during hot working of non-uniform as-cast 42CrMo billets 被引量:11
18
作者 Lianggang GUO Fengqi WANG +2 位作者 Pengliang ZHEN Xuechao LI Mei ZHAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期531-545,共15页
The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. Ho... The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process. 展开更多
关键词 Cast preformed forming process flow stress Grain size NON-UNIFORM AS-CAST 42CrMo BILLET Ring rolling Unified model
原文传递
Clinical Efficacy of Modified Erchen Decoction on Cervical Spondylotic Vertebral Arteriopathy with Stagnation and Blockade of Phlegm-dampness Syndrome and Effects on Cerebral Blood Flow Parameters 被引量:1
19
作者 Tang Qiang 《World Journal of Integrated Traditional and Western Medicine》 2018年第4期21-26,共6页
OBJECTIVE: To observe the effect of Modified Erchen Decoction on cervical spondylotic vertebral arteriopathy with stagnation and blockade of phlegm-dampness syndrome and effects on cerebral blood flow parameters. METH... OBJECTIVE: To observe the effect of Modified Erchen Decoction on cervical spondylotic vertebral arteriopathy with stagnation and blockade of phlegm-dampness syndrome and effects on cerebral blood flow parameters. METHODS: A total of 80 cervical spondylotic vertebral arteriopathy(CSA) patients with stagnation and blockade of phlegmdampness syndrome admitted to our hospital from October 2016 to April 2017 were selected and randomly divided into observation group and control group, with 40 cases in each group. The observation group was treated with Modified Erchen Decoction and the control group was given conventional treatment with Western medicine. After 4 weeks of treatment, the main clinical symptoms and signs(vertigo, neck and shoulder pain, headache, psychological and social adjustment, daily life and work) and cerebral blood flow parameters [the peak values of intracranial vertebral-basal artery diastolic blood flow velocity(Vd) and systolic blood flow velocity(Vp)] were compared between the 2 groups. The total clinical effective rate and adverse reactions during treatment were also compared. RESULTS: After treatment, the total effective rate of the observation group was 90.0%, which was significantly higher than that of the control group(77.5%). The difference between the two groups was statistically significant(P < 0.05). After treatment, The scores of vertigo, neck and shoulder pain, headache, psychology and society adaptation, daily life and work were significantly increased(P < 0.05), and the above scores of the observation group were increased more obviously. The difference between the groups was statistically significant(P < 0.05). After treatment, the levels of Vd and Vp were significantly increased(P < 0.05), and the increase of the above indexes was more obvious in the observation group. The difference between the 2 groups was statistically significant(P < 0.05). There were no significant abnormalities in blood routine, urine routine, liver function and renal function. There was no significant difference in the incidence of adverse reactions between the 2 groups.(P > 0.05). CONCLUSION: The treatment of vertebral artery type cervical spondylopathy with stagnation and blockade of phlegm-dampness syndrome by Modified Erchen Decoction can effectively relieve the main clinical symptoms and signs, improve cerebral blood flow parameters, and improve the peak values of vertebral-basal artery diastolic blood flow velocity(Vd) and systolic blood flow velocity(Vp), which is safe and effective, and helps to promote the recovery of cervical function. 展开更多
关键词 VERTEBRAL artery type CERVICAL spondylopathy STAGNATION and BLOCKADE of PHLEGM-DAMPNESS Modified Erchen Decoction Cerebral blood flow PARAMETERS
暂未订购
GALERKIN METHOD FOR COMPRESSIBLE FLOW OF CONTAMINATION FROM NUCLEAR WASTE WITH MOLECULAR DIFFUSION AND DISPERSION
20
作者 程爱杰 王高洪 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第1期39-52,共14页
Abstract A system of quasilinear coupled equations which arise from simulation of contamination of geologic nulear waste in porous media is studied. We’ll discuss Galerkin method for the model of compressible flow wi... Abstract A system of quasilinear coupled equations which arise from simulation of contamination of geologic nulear waste in porous media is studied. We’ll discuss Galerkin method for the model of compressible flow with molecular diffusion and dispersion. Some new techniques are introcued to error analysis. Only one dimensional case is considered. The optimal error estimate in both L^2 and H^1 is proved. A contribution of this paper is how the dispersion term can be handled, 展开更多
关键词 COMPRESSIBLE flow CONTAMINATION of nuclear waste molecular diffusion and DISPERSION GALERKIN finite element method optimal error estimate.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部