期刊文献+
共找到22,591篇文章
< 1 2 250 >
每页显示 20 50 100
Review on internal flow mechanism and control methods of axial flow compressor at low Reynolds number
1
作者 Xuyang REN Xingen LU +6 位作者 Mingyang WANG Ge HAN Chengwu YANG Xu DONG Lipan YAO Yanfeng ZHANG Shengfeng ZHAO 《Chinese Journal of Aeronautics》 2025年第5期7-27,共21页
With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical... With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed. 展开更多
关键词 LowReynolds number Axial compressor flow mechanism flow control methods AEROENGINE
原文传递
Novel adaptive IMEX two-step Runge-Kutta temporal discretization methods for unsteady flows
2
作者 Xueyu QIN Jian YU +2 位作者 Xin ZHANG Zhenhua JIANG Chao YAN 《Chinese Journal of Aeronautics》 2025年第8期142-153,共12页
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un... Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over. 展开更多
关键词 Implicit-explicit temporal methods Two-step Runge-Kutta methods Adaptive algorithm Unsteady flows Navier-Stokes equations
原文传递
Correlating NAD(P)H lifetime shifts to tamoxifen resistance in breast cancer cells:A metabolic screening study with time-resolved flow cytometry
3
作者 Samantha Valentino Karla Ortega-Sandoval +1 位作者 Kevin D.Houston Jessica P.Houston 《Journal of Innovative Optical Health Sciences》 2025年第1期101-115,共15页
Time-resolved flow cytometry(TRFC)was used to measure metabolic differences in estrogen receptor-positive breast cancer cells.This specialty cytometry technique measures fluorescence lifetimes as a single-cell paramet... Time-resolved flow cytometry(TRFC)was used to measure metabolic differences in estrogen receptor-positive breast cancer cells.This specialty cytometry technique measures fluorescence lifetimes as a single-cell parameter thereby providing a unique approach for high-throughput cell counting and screening.Differences in fluorescence lifetime were detected and this was associated with sensitivity to the commonly prescribed therapeutic tamoxifen.Differences in fluorescence lifetime are attributed to the binding states of the autofluorescent metabolite NAD(P)H.The function of NAD(P)H is well described and in general involves cycling from a reduced to oxidized state to facilitate electron transport for the conversion of pyruvate to lactate.NAD(P)H fluorescence lifetimes depend on the bound or unbound state of the metabolite,which also relates to metabolic transitions between oxidative phosphorylation and glycolysis.To determine if fundamental metabolic profiles differ for cells that are sensitive to tamoxifen compared to those that are resistant,large populations of MCF-7 breast cancer cells were screened and fluorescence lifetimes were quantified.Additionally,metabolic differences associated with tamoxifen sensitivity were measured with a Seahorse HS mini metabolic analyzer(Agilent Technologies Inc.Santa Clara,CA)and confocal imaging.Results show that tamoxifen-resistant breast cancer cells have increased utilization of glycolysis for energy production compared to tamoxifen-sensitive breast cancer cells.This work is impacting because it establishes an early step toward developing a reliable screening technology in which large cell censuses can be differentiated for drug sensitivity in a label-free fashion. 展开更多
关键词 TIME-RESOLVED flow cytometry AUTOFLUORESCENCE fluorescence lifetime breast cancer metabolism
原文传递
Chinese expert consensus on flow cytometric detection of hematological malignant cells in tissue samples
4
作者 Zailin Yang Xia Mao +20 位作者 Mingxia Zhu Shuang Chen Zifen Gao Tingting Jiang Yu Peng Fanggang Ren Huijun Wang Lili Wang Suigui Wan Xiangqin Weng Chunyan Wang Yujie Wu Yazhe Wang Yonggang Xu Jie Zhu Mingqing Zhu Yaping Zhai Hongmei Jing Min Xiao Yao Liu Yanrong Liu 《Journal of the National Cancer Center》 2025年第1期28-37,共10页
Flow cytometry(FCM),characterized by its simplicity,rapid processing,multiparameter analysis,and high sen-sitivity,is widely used in the diagnosis,treatment,and prognosis of hematological malignancies.FCM testing of t... Flow cytometry(FCM),characterized by its simplicity,rapid processing,multiparameter analysis,and high sen-sitivity,is widely used in the diagnosis,treatment,and prognosis of hematological malignancies.FCM testing of tissue samples not only aids in diagnosing and classifying hematological cancers,but also enables the detection of solid tumors.Its ability to detect numerous marker parameters from small samples is particularly useful when dealing with limited cell quantities,such as in fine-needle biopsy samples.This attribute not only addresses the challenge posed by small sample sizes,but also boosts the sensitivity of tumor cell detection.The significance of FCM in clinical and pathological applications continues to grow.To standardize the use of FCM in detecting hematological malignant cells in tissue samples and to improve quality control during the detection process,experts from the Cell Analysis Professional Committee of the Chinese Society of Biotechnology jointly drafted and agreed upon this consensus.This consensus was formulated based on current literature and clinical practices of all experts across clinical,laboratory,and pathological fields in China.It outlines a comprehensive workflow of FCM-based assay for the detection of hematological malignancies in tissue samples,including report content,interpretation,quality control,and key considerations.Additionally,it provides recommendations on antibody panel designs and analytical approaches to enhancing FCM tests,particularly in cases with limited sample sizes. 展开更多
关键词 Tissue samples flow cytometry IMMUNOPHENOTYPING Hematological malignancies
暂未订购
Impedance flow cytometry empowered by ConvNet algorithm to differentiate bladder cancer cells based on electro-mechanical characteristics
5
作者 Shuaihua Zhang Zhiwen Zheng +2 位作者 Yongqi Chen Zhihong Zhang Ziyu Han 《Nanotechnology and Precision Engineering》 2025年第3期88-97,共10页
Bladder cancer(BC)is a common malignancy and among the leading causes of cancer death worldwide.Analysis of BC cells is of great significance for clinical diagnosis and disease treatment.Current approaches rely mainly... Bladder cancer(BC)is a common malignancy and among the leading causes of cancer death worldwide.Analysis of BC cells is of great significance for clinical diagnosis and disease treatment.Current approaches rely mainly on imaging-based technology,which requires complex staining and sophisticated instrumentation.In this work,we develop a label-free method based on artificial intelligence(AI)-assisted impedance-based flow cytometry(IFC)to differentiate between various BC cells and epithelial cells at single-cell resolution.By applying multiple-frequency excitations,the electrical characteristics of cells,including membrane and nuclear opacities,are extracted,allowing distinction to be made between epithelial cells,low-grade,and high-grade BC cells.Through the use of a constriction channel,the electro-mechanical properties associated with active deformation behavior of cells are investigated,and it is demonstrated that BC cells have a greater capability of shape recovery,an observation that further increases differentiation accuracy.With the assistance of a convolutional neural network-based AI algorithm,IFC is able to effectively differentiate various BC and epithelial cells with accuracies of over 95%.In addition,different grades of BC cells are successfully differentiated in both spiked mixed samples and bladder tumor tissues. 展开更多
关键词 Impedance flow cytometry ConvNet model Differentiation between cells Bladder cancer analysis
暂未订购
Bound-Preserving Discontinuous Galerkin Methods with Modified Patankar Time Integrations for Chemical Reacting Flows
6
作者 Fangyao Zhu Juntao Huang Yang Yang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期190-217,共28页
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e... In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes. 展开更多
关键词 Compressible Euler equations Chemical reacting flows Bound-preserving Discontinuous Galerkin(DG)method Modified Patankar method
在线阅读 下载PDF
Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD^4+ CD25^+ Treg cells 被引量:4
7
作者 Hang YAN Chen-guang DING Pu-xun TIAN Guan-qun GE Zhan-kui JIN Li-ning JIA Xiao-ming DING Xiao-ming PAN Wu-jun XUE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2009年第12期928-932,共5页
Objective: In this paper we compared the two methods of cell sorting (magnetic cell sorting and flow cytometry sorting) for the isolation and function analysis of mouse CD4+ CD25+ regulatory T (Treg) cells, in order t... Objective: In this paper we compared the two methods of cell sorting (magnetic cell sorting and flow cytometry sorting) for the isolation and function analysis of mouse CD4+ CD25+ regulatory T (Treg) cells, in order to inform further studies in Treg cell function. Methods: We separately used magnetic cell sorting and flow cytometry sorting to identify CD4+ CD25+ Treg cells. After magnetic cell separation, we further used flow cytometry to analyze the purity of CD4+ CD25+ Treg cells, trypan blue staining to detect cell viability, and propidium iodide (PI) staining to assess the cell viability. We detected the immune inhibition of CD4+ CD25+ Treg cells in the in vitro proliferation experiments. Results: The results showed that compared to flow cytometry sorting, magnetic cell sorting took more time and effort, but fewer live cells were obtained than with flow cytometry sorting. The CD4+ CD25+ Treg cells, however, obtained with both methods have similar immunosuppressive capacities. Conclusion: The result suggests that both methods can be used in isolating CD4+ CD25+ Treg cells, and one can select the best method according to specific needs and availability of the methodologies. 展开更多
关键词 CD4+ CD25+ Treg cells flow cytometry sorting Magnetic cell sorting
原文传递
Better understanding of the activated sludge process combining fluorescence-based methods and flow cytometry:A case study 被引量:1
8
作者 Vanesa Benito Javier Etxebarria +3 位作者 Felipe Goni-de-Cerio Inigo Gonzalez Pilar Brettes Ana Urkiaga 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期51-58,共8页
This study aims to demonstrate the validity of fluorescence-based methods,together with flow cytometry,as a complementary tool to conventional physicochemical analyses carried out in wastewater treatment plants(WWTPs)... This study aims to demonstrate the validity of fluorescence-based methods,together with flow cytometry,as a complementary tool to conventional physicochemical analyses carried out in wastewater treatment plants(WWTPs),for the control of the currently largely unknown activated sludge process.Staining with SYTO 9,propidium iodide and 5-(and 6)-carboxy-2’,7’-difluorodihydrofluorescein diacetate(carboxy-H2 DFFDA)was used for cell viability and oxidative stress monitoring of the bacterial population forming the activated sludge of a WWTP.Throughout the period of research,several unstable periods were detected,where the non-viable bacteria exceeded the 75%of the total bacterial population in the activated sludge,but only in one case the cells with oxidative stress grew to 9%,exceeding the typical values of2%-5%of this plant.These periods coincided in two cases with high values of total suspended solids(SST)and chemical oxygen demand(COD)in the effluent,and with an excess of ammonia in other case.A correlation between flow cytometric and physicochemical data was found,which enabled to clarify the possible origin of each case of instability in the biological system.This experience supports the application of bacterial fluorescence staining,together with flow cytometric analysis,as a simple,rapid and reliable tool for the control and better understanding of the bacteria dynamics in a biological wastewater treatment process. 展开更多
关键词 Activated sludge Wastewater treatment Cell viability Oxidative stress Fluorescent dyes flow cytometry
原文传递
Direct computing methods for turn flows in traffic assignment
9
作者 任刚 王炜 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期225-228,共4页
Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks.... Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks. The first one is designed on the path-turn incidencerelationship, and it is similar to the computational procedure of link flows. It applies to thetraffic assignment algorithms that can provide detailed path structures. The second utilizes thelink-turn incidence relationship and the conservation of flow on links, a law deriving from thisrelationship. It is actually an improved version of Dial's logit assignment algorithm. The proposedapproaches can avoid the shortcomings both of the estimation methods, e. g. Furness's model andFrator's model, and of the network-expanding method in precision, stability and computation scale.Finally, they are validated by numerical examples. 展开更多
关键词 turn flow traffic assignment Dial's algorithm directly computing method
在线阅读 下载PDF
Mobility and dynamic erosion process of granular flow:insights from numerical investigation using material point method 被引量:2
10
作者 YU Fangwei SU Lijun +1 位作者 LI Xinpo ZHAO Yu 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2713-2738,共26页
In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility... In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility and dynamic erosion process of granular flow subjected to the complex settings,i.e.,the aspect ratio,granular mass,friction and dilatancy resistance,gravity and presence of water.A set of power scaling laws were proposed to describe the final deposit characteristics of granular flow by the relations of the normalized run-out distance and the normalized final height of granular flow against the aspect ratio,being greatly affected by the complex geological settings,e.g.,granular mass,the friction and dilatancy resistance of granular soil,and presence of water in granular flow.An index of the coefficient of friction of granular soil was defined as a ratio of the target coefficient of friction over the initial coefficient of friction to quantify the scaling extent of friction change(i.e.,friction strengthening or weakening).There is a characteristic aspect ratio of granular column corresponding to the maximum mobility of granular flow with the minimum index of the apparent coefficient of friction.The index of the repose coefficient of friction of granular flow decreased gradually with the increase in aspect ratio because higher potential energy of granular column at a larger aspect ratio causes a larger kinetic energy of granular soil to weaken the friction of granular soil as a kind of velocity-related friction weakening.An increase in granular mass reduces gradually the indexes of the apparent and repose coefficients of friction of granular soil to enhance the mobility of granular flow.The mobility of granular flow increases gradually with the decrease in friction angle or increase in dilatancy angle of granular soil.However,the increase of gravity accelerates granular flow but showing the same final deposit profile without any dependence on gravity.The mobility of granular flow increases gradually by lowering the indexes of the apparent and repose coefficients of friction of granular flow while changing the surroundings,in turn,the dry soil,submerged soil and saturated soil,implying a gradually increased excessive mobility of granular flow with the friction weakening of granular soil.Presence of water in granular flow may be a potential catalyzer to yield a long run-out granular flow,as revealed in comparison of water-absent and water-present granular flows.In addition,the dynamic erosion and entrainment of based soil induced by granular flow subjected to the complex geological settings,i.e.,the aspect ratio,granular mass,gravity,friction and dilatancy resistance,and presence of water,were comprehensively investigated as well. 展开更多
关键词 Column collapse Granular flow Granular soil Material point method MOBILITY Numerical tests
原文传递
In vivo fluorescence flow cytometry reveals that the nanoparticle tumor vaccine OVA@HA-PEI effectively clears circulating tumor cells 被引量:1
11
作者 Wei Jin Yuting Fu +3 位作者 Sisi Ge Han Sun Kai Pang Xunbin Wei 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期107-123,共17页
Tumor vaccine therapy offers significant advantages over conventional treatments,including reduced toxic side effects.However,it currently functions primarily as an adjuvant treatment modality in clinical oncology due... Tumor vaccine therapy offers significant advantages over conventional treatments,including reduced toxic side effects.However,it currently functions primarily as an adjuvant treatment modality in clinical oncology due to limitations in tumor antigen selection and delivery methods.Tumor vaccines often fail to elicit a sufficiently robust immune response against progressive tumors,thereby limiting their clinical efficacy.In this study,we developed a nanoparticle-based tumor vaccine,OVA@HA-PEI,utilizing ovalbumin(OVA)as the presenting antigen and hyaluronic acid(HA)and polyethyleneimine(PEI)as adjuvants and carriers.This formulation significantly enhanced the proliferation of immune cells and cytokines,such as CD3,CD8,interferon-,and tumor necrosis factor-,in vivo,effectively activating an immune response against B16–F10 tumors.In vivofluorescenceflow cytometry(IVFC)has already become an effective method for monitoring circulating tumor cells(CTCs)due to its direct,noninvasive,and long-term detection capabilities.Our study utilized a laboratory-constructed IVFC system to monitor the immune processes induced by the OVA@HA-PEI tumor vaccine and an anti-programmed death-1(PD-1)antibody.The results demonstrated that the combined treatment of OVA@HA-PEI and anti-PD-1 antibody significantly improved the survival time of mice compared to anti-PD-1 antibody treatment alone.Additionally,this combination therapy substantially reduced the number of CTCs in vivo,increased the clearance rate of CTCs by the immune system,and slowed tumor progression.Thesefindings greatly enhance the clinical application prospects of IVFC and tumor vaccines. 展开更多
关键词 Tumor vaccines circulating tumor cells in vivo fluorescence flow cytometry.
原文传递
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
12
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem Fluid flow Granular media Automatic differentiation(AD) Lattice Boltzmann method(LBM)
在线阅读 下载PDF
Impact dynamics of granular flow on rigid barriers:insights from numerical investigation using material point method
13
作者 YU Fangwei SU Lijun +1 位作者 LI Xinpo ZHAO Yu 《Journal of Mountain Science》 SCIE CSCD 2024年第12期4083-4111,共29页
In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Me... In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Method(MPM)numerical tests.The impact behavior of granular flow on a rigid barrier was characterized by the initial dynamic impact stage,dynamic surge impact stage,compression impact stage and static stage of granular flow,where the impact force of granular flow was comprised of the dynamic and static forces of granular flow.The impact behavior of granular flow on a rigid barrier was characterized by the states of the fast or slow impact behavior of granular flow.The angle of slope and aspect ratio of granular soil greatly affected the impact behavior of granular flow on a column rigid barrier,where a power model was proposed to quantify the residual(Fnr)-over-maximum(Fnmax)normal impact force ratio of granular flow Fnr⁄Fnmax incorporating the effects of the angle of slope and aspect ratio of granular soil.With the increase of the column rigid barrier up to the semi-infinite column rigid barrier,the impact dynamics of granular flow gradually increased up to a maximum by progressively transforming the overflow into the dynamic surge impact of the incoming flow on the rigid barrier to capture more granular soil of granular flow against the rigid barrier.Presence of water in granular flow,i.e.,a mixture of solid and liquid in granular flow,yielded a dynamic coupling contribution of the solid and liquid,being accompanied by the whole dynamic process of granular flow,on the impact behavior of granular flow on a rigid barrier,where the liquid-phase material of granular flow,i.e.,the water,was predominant to contribute on the normal impact force of granular flow in comparison with the solid-phase material of granular flow.In addition,other factors,e.g.,the shape of rigid barrier(i.e.,the column barrier,arch barrier and circle barrier),and the gravity(i.e.,in the gravitational environment of the Moon,Earth and Mars),greatly affected the impact behavior of granular flow on a rigid barrier as well. 展开更多
关键词 Column collapse Granular flow Impact force Material point method Numerical tests Rigid barrier
原文传递
Determination of dynamic capillary effect on two-phase flow in porous media: A perspective from various methods 被引量:2
14
作者 Jian-Chao Cai Yin Chen +3 位作者 Jun-Cheng Qiao Liu Yang Jian-Hui Zeng Chen-Hao Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1641-1652,共12页
The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under th... The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under the static condition, where capillary pressure is the only function of saturation. However,considerable experiments have suggested that the dependence of capillary pressure on desaturation rate is under the dynamic condition. Thus, a more general description of capillary pressure that includes dynamic capillary effect has been approved widely. A comprehensive understanding of the dynamic capillary effect is needed for the investigation of the two-phase flow in porous media by various methods. In general, dynamic capillary effect in porous media can be studied through the laboratory experiment, pore-to macro-scale modeling, and artificial neural network. Here, main principle and research procedures of each method are reviewed in detail. Then, research progress, disadvantages and advantages are discussed, respectively. In addition, upscaling study from pore-to macro-scale are introduced, which explains the difference between laboratory experiment and pore-scale modeling. At last, several future perspectives and recommendations for optimal solution of dynamic capillary effect are presented. 展开更多
关键词 Dynamic capillary effect Capillary pressure Two-phase flow Modeling method
原文传递
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
15
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
在线阅读 下载PDF
Hybrid Methods for Computing the Streamfunction and Velocity Potential for Complex Flow Fields over Mesoscale Domains 被引量:2
16
作者 Jie CAO Qin XU +1 位作者 Haishan CHEN Shuping MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1417-1431,共15页
Three types of previously used numerical methods are revisited for computing the streamfunctionψand velocity potentialχfrom the horizontal velocity v in limited domains.The first type,called the SOR-based method,use... Three types of previously used numerical methods are revisited for computing the streamfunctionψand velocity potentialχfrom the horizontal velocity v in limited domains.The first type,called the SOR-based method,uses a classical successive over-relaxation(SOR)scheme to computeψ(orχ)first with an arbitrary boundary condition(BC)and thenχ(orψ)with the BC derived from v.The second type,called the spectral method,uses spectral formulations to construct the inner part of(ψ,χ)-the inversion of(vorticity,divergence)with a homogeneous BC,and then the remaining harmonic part of(ψ,χ)with BCs from v.The third type,called the integral method,uses integral formulas to compute the internally induced(ψ,χ)-the inversion of domain-internal(vorticity,divergence)using the free-space Greenꞌs function without BCs and then the remaining harmonicψ(orχ)with BCs from v minus the internally-induced part.Although these methods have previously been successfully applied to flows in large-scale and synoptic-scale domains,their accuracy is compromised when applied to complex flows over mesoscale domains,as shown in this paper.To resolve this problem,two hybrid approaches,the integral-SOR method and the integral-spectral method,are developed by combining the first step of the integral method with the second step adopted from the SOR-based and spectral methods,respectively.Upon testing these methods on real-case complex flows,the integral-SOR method is significantly more accurate than the integral-spectral method,noting that the latter is still generally more accurate than the three previously-used methods.The integral-SOR method is recommended for future applications and diagnostic studies of complex flows. 展开更多
关键词 streamfunction and velocity potential complex flow fields successive over-relaxation method mesoscale study
在线阅读 下载PDF
A flexible multiscale algorithm based on an improved smoothed particle hydrodynamics method for complex viscoelastic flows
17
作者 Jinlian REN Peirong LU +2 位作者 Tao JIANG Jianfeng LIU Weigang LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1387-1402,共16页
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ... Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results. 展开更多
关键词 multiscale method improved smoothed particle hydrodynamics(SPH) dissipative particle dynamics(DPD) multiscale universal interface(MUI) complex viscoelastic flow
在线阅读 下载PDF
Ocean singularity analysis and global heat flow prediction reveal anomalous bathymetry and heat flow 被引量:1
18
作者 Yang Zhang Qiuming Cheng +1 位作者 Tao Hong Junjie Ji 《Geoscience Frontiers》 2025年第3期193-204,共12页
The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and... The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges. 展开更多
关键词 Heat flow BATHYMETRY Fractal density Power-law model Singularity analysis Similarity method
在线阅读 下载PDF
In Vivo Studies and Flow Cytometric Investigation on Anticancer Potential of Selenium Nanoparticles Synthesized via Aqueous Extract of Clerodendron phlomidis
19
作者 Veeramani Subha Kirubanandan Shanmugam Renganathan Sahadevan 《Proceedings of Anticancer Research》 2024年第1期71-81,共11页
Nowadays,doctors and nutritionists recommend individuals incorporate selenium-rich foods such as nuts,cereals,and mushrooms into their regular diet to maintain fitness and overall health.Selenium nanoparticles(SeNPs)e... Nowadays,doctors and nutritionists recommend individuals incorporate selenium-rich foods such as nuts,cereals,and mushrooms into their regular diet to maintain fitness and overall health.Selenium nanoparticles(SeNPs)exhibit strong chemopreventive capabilities.The anticipations for SeNPs with enhanced and tunable bioactive activities have led to a keen interest in phytofabrication.In this study,the aqueous extract of Clerodendron phlomidis plant leaves was utilized for the synthesis of SeNPs.In traditional Indian medicine,this plant extract is recognized as a significant anti-diabetic agent.The flavonoids tetrahydroxylflavone,7-hydroxyflavanone,and 6,4’-dimethyl-7-acetoxy-scutellarein present in this plant leaf extract demonstrate excellent anticancer activity.These secondary metabolites exhibit the ability to reduce sodium selenite into SeNPs.At a concentration of 13μg/mL,the synthesized SeNPs effectively inhibited the proliferation of the HepG2 cell line.The results suggest that the SeNPs possess promising anti-cancer potential against liver cancer and can be considered as a therapeutic agent for liver cancer treatment.Additionally,the cell cycle arrest induced by SeNPs was further confirmed by the fluorescence-activated cell sorting(FACS)method,indicating that SeNPs could efficiently differentiate cancer cells from normal cells.Notably,it showed a significant improvement in diethylnitrosamine(DEN)-induced Swiss Wistar rat groups.This scientific investigation highlights the high anti-cancer potential of SeNPs,positioning them as a promising therapeutic agent for liver cancer treatment. 展开更多
关键词 Selenium nanoparticles Green synthesis Liver cancer Clerodendron phlomidis flow cytometry In vivo studies
暂未订购
Research on the Optimization Control Method of Inbound Traffic Flow on On-ramp
20
作者 Yun Li Zengqiang Wang 《Journal of World Architecture》 2024年第6期16-21,共6页
This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and tra... This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach. 展开更多
关键词 Traffic flow Optimization control method On-ramp vehicle
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部