期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Review on internal flow mechanism and control methods of axial flow compressor at low Reynolds number
1
作者 Xuyang REN Xingen LU +6 位作者 Mingyang WANG Ge HAN Chengwu YANG Xu DONG Lipan YAO Yanfeng ZHANG Shengfeng ZHAO 《Chinese Journal of Aeronautics》 2025年第5期7-27,共21页
With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical... With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed. 展开更多
关键词 LowReynolds number Axial compressor flow mechanism flow control methods AEROENGINE
原文传递
On the hydrodynamics of hydraulic machinery and flow control 被引量:6
2
作者 陈红勋 马峥 +6 位作者 张伟 朱兵 张睿 魏群 张正川 刘超 何建武 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期782-789,共8页
Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry,... Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary(rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model, a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately. According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics(pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery. 展开更多
关键词 Hydraulic machinery unsteady flow turbulence model flow control method dynamic characteristic
原文传递
Numerical investigation of Reynolds number and scaling effects in microchannels flows 被引量:4
3
作者 S.A.Si Salah E.G.Filali S.Djellouli 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期647-658,共12页
Compared with conventional channels, experiments of microchannel often exhibit some controversial findings and sometimes even opposite trends, most notably the effects of the Reynolds number and the scaled channel hei... Compared with conventional channels, experiments of microchannel often exhibit some controversial findings and sometimes even opposite trends, most notably the effects of the Reynolds number and the scaled channel height on the Poiseuille number. The experimental method has still been constrained by two key facts, firstly the current ability to machine microstructures and secondly the limitation of measurement of parameters related to the Poiseuille number. As a consequence, numerical method was adopted in this study in order to analyze a flow in two-dimensional rectangular microchannels using water as working fluid. Results are obtained by the solution of the steady laminar incompressible Navier-Stokes equations using control volume finite element method(CVFEM) without pressure correction. The computation was made for channel height ranging from 50 ?m to 4.58 ?m and Reynolds number varying from 0.4 to 1 600. The effect of Reynolds number and channel heights on flow characteristics was investigated. The results showed that the Poiseuille numbers agree fairly well with the experimental measurements proving that there is no scale effect at small channel height. This scaling effect has been confirmed by two additional simulations being carried out at channel heights of 2.5 ?m and 0.5 ?m, respectively and the range of Reynolds number was extended from 0.01 up to 1 600. This study confirm that the conventional analysis approach can be employed with confidence for predicting flow behavior in microchannels when coupled with carefully matched entrance and boundary conditions in the dimensional range considered here. 展开更多
关键词 Rectangular microchannel Poiseuille number control volume finite element method(CVFEM) laminar flow minichannels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部