The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlin...The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.展开更多
The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.H...The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.展开更多
An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to...An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator's performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement;a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root.展开更多
Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recu...Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recurrent instances of substantial passenger influxes, a methodology predicated on stochastic processesand the principle of user equilibrium is introduced to facilitate real-time traffic flow estimation within transferstation streamlines.Design/methodology/approach – The synthesis of stochastic process theory with streamline analysisengenders a probabilistic model of intra-station pedestrian traffic dynamics. Leveraging real-time passengerflow data procured from monitoring systems within the transfer station, a gradient descent optimizationtechnique is employed to minimize the cost function, thereby deducing the dynamic distribution of categorizedpassenger flows. Subsequently, adhering to the tenets of user equilibrium, the Frank–Wolfe algorithm isimplemented to allocate the intra-station categorized passenger flows across various streamlines, ascertainingthe traffic volume for each.Findings – Utilizing the Xiaozhai Station of the Xi’an Metro as a case study, the Anylogic simulation softwareis engaged to emulate the intra-station crowd dynamics, thereby substantiating the efficacy of the proposedpassenger flow estimation model. The derived solutions are instrumental in formulating a crowd controlstrategy for Xiaozhai Station during the peak interval from 17:30 to 18:00 on a designated day, yielding crowdmanagement interventions that offer insights for the orchestration of passenger flow and operationalgovernance within metro stations.Originality/value – The construction of an estimation methodology for the real-time streamline traffic flowaugments the model’s dataset, supplanting estimated values derived from surveys or historical datasets withreal-time computed traffic data, thereby enhancing the precision and immediacy of crowd flow managementwithin metro stations.展开更多
The explicit rate flow control mechanisms for ABR service are used to sharethe available bandwidth of a bottleneck link fairly and reasonably among many competitive users andto maintain the buffer queue length of a bo...The explicit rate flow control mechanisms for ABR service are used to sharethe available bandwidth of a bottleneck link fairly and reasonably among many competitive users andto maintain the buffer queue length of a bottleneck switch connected to the link at a desired levelin order to avoid and control congestion in ATM networks. However, designing effective flow controlmechanisms for the service is known to be difficult because of the variety of dynamic parametersinvolved such as available link bandwidth, burst of the traffic, the distances between ABR sourcesand switches. In this paper, we present a fuzzy explicit rate flow control mechanism for ABRservice. The mechanism has a simple structure and is robust in the sense that the mechanism'sstability is not sensitive to the change in the number of active virtual connections (VCs). Manysimulations show that this mechanism can not only effectively avoid network congestion, but alsoensure fair share of the bandwidth for all active VCs regardless of the number of hops theytraverse. Additionally, it has the advantages of fast convergence, low oscillation, and high linkbandwidth utilization.展开更多
This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpo...This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpose of the experiments is to take advantage of MHD interaction to weaken the oblique shock wave strength by changing the boundary flow characteristics around the ramp. Plasma columns are generated by pulsed direct current ( DC ) discharge, the magnetic fields are generated by Nd-Fe-B rare-earth permanent magnets and the oblique shock waves in supersonic flow are generated by the ramp. The Lorentz body force effect of MHD interaction on the plasma-induced airflow velocity is verified through particle image velocimetry(PIV)measurements. The experimental results from the supersonic wind tunnel indicate that the MHD flow control can drastically change the flow characteristics of the airflow around the ramp and decrease the ratio of the Pitot pressure after shock wave to that before it by up to 19.66% ,which leads to the decline in oblique shock wave strength. The oblique shock waves in front of the ramp move upstream by the action of the Lorentz body force. The discharge characteristics are analyzed and the MHD interaction time and consumed energy are determined with the help of the pulsed DC discharge images. The interaction parameter corresponding to the boundary layer velocity can reach 1.3 from the momentum conservation equation. The velocity of the plasma column in the magnetic field is much faster than that in the absence of magnetic field force. The plasma can strike the neutral gas molecules to transfer momentum and accelerate the flow around the ramp.展开更多
The optimization of flow control devices in a single-slab continuous casting tundish was carried out by physical modeling, and the optimized scheme was presented. With the optimal tundish configuration, the minimum re...The optimization of flow control devices in a single-slab continuous casting tundish was carried out by physical modeling, and the optimized scheme was presented. With the optimal tundish configuration, the minimum residence time of liquid steel was increased by 1.4 times, the peak concentration time was increased by 97%, and the dead volume fraction was decreased by 72%. A mathematical model for molten steel in the tundish was established by using the fluid dynamics package Fluent. The velocity field, concentration field, and the resi-dence time distribution (RTD) curves of molten steel flow before and after optimization were obtained. Experimental results showed that the reasonable configuration with flow control devices can improve the fluid flow characteristics in the tundish. The results of industrial applica-tion show that the nonmetallic inclusion area ratio in casting slabs is decreased by 32% with the optimal tundish configuration.展开更多
A 1∶2.5 scale tundish model was set up in laboratory for a six-strand billet continuous casting tundish with different configurations to investigate fluid flow characteristics under different operational conditions b...A 1∶2.5 scale tundish model was set up in laboratory for a six-strand billet continuous casting tundish with different configurations to investigate fluid flow characteristics under different operational conditions by measuring residence time distribution curves.It was found that minimum residence time,maximum concentration time and average residence time of the three strands on the same side of the tundish with the former configuration under normal operation,that is,six strands were open,were small and non-uniform and the tundish had large dead volume fraction.Vortexes easily formed on the liquid surface in the pouring zone of the tundish.The fluid flow characteristics in the tundish with the optimal turbulence inhibitor and baffles were improved and became less non-uniform among the strands.Vortexes were not found on the pouring zone surface in the optimal tundish.For non-normal operation,that is,one strand was close,it was important to choose which strand to be closed for maintaining flow characteristics of the rest two strands.It was found from this investigation that fluid flow characteristics in the optimal configuration tundish with closing strand 2 were better than those with closing strand 3 on the same side.展开更多
The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with ...The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with moderate load. The static and dynamic characteristics of the guide have been studied by using some theoretical, numerical and experimental approaches, and some methods and measures have been proposed to improve its performances. The hydrostatic guide based on progressive mengen(PM) flow controller is especially suitable for the heavy numerical control(NC) machine tools. However, few literatures about the research on the static and dynamic characteristics of the hydrostatic guides based on PM flow controller are reported. In this paper, the formulae are derived for analyzing the static and dynamic characteristics of hydrostatic guides with rectangle pockets and PM flow controller according to the theory of hydrostatic bearing. On the basis of the analysis of hydrostatic bearing with circular pocket, some equations are derived for solving the static pressure, volume pressure and squeezing pressure which influence the dynamic characteristics of hydrostatic guides with rectangle pocket. The function and the influencing factors of three pressures are clarified. The formulae of amplitude-frequency characteristics and dynamic stiffness of the hydrostatic guide system are derived. With the help of software MATLAB, programs are coded with C++ language to simulate numerically the static and dynamic characteristics of the hydrostatic guide based on PM flow controller. The simulation results indicate that the sensitive oil volume between the outlet of the PM flow controller and the guide pocket has the greatest influence on the characteristics of the guide, and it should be reduced as small as possible when the field working condition is met. Choosing the oil with a greater viscosity is also helpful in improving the dynamic performance of hydrostatic guides. The research work has instructing significance for analyzing and designing the guide with PM flow controller.展开更多
A new gust load alleviation technique is presented in this paper based on active flow control. Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi "Gl...A new gust load alleviation technique is presented in this paper based on active flow control. Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi "Global Hawk" airfoil using arrays of jets during the gust process. Based on unsteady Navier-Stokes equations, the grid-velocity method is introduced to simulate the gust influence, and dynamic response in vertical gust flow perturbation is investigated for the airfoil as well. An unsteady surface transpiration boundary condition is enforced over a user specified portion of the airfoil’s surface to emulate the time dependent velocity boundary conditions. Firstly, after applying this method to simulate typical NACA0006 airfoil gust response to a step change in the angle of attack, it shows that the indicial responses of the airfoil make good agreement with the exact theoretical values and the calculated values in references. Furthermore, gust response characteristic for the quasi "Global Hawk" airfoil is analyzed. Five kinds of flow control techniques are introduced as steady blowing, steady suction, unsteady blowing, unsteady suction and synthetic jets. The physical analysis of the influence on the effects of gust load alleviation is proposed to provide some guidelines for practice. Numerical results have indicated that active flow control technique,as a new technology of gust load alleviation, can affect and suppress the fluid disturbances caused by gust so as to achieve the purpose of gust load alleviation.展开更多
The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which wa...The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which was used instead of the round tundish, had been optimized. The results show that the residence time of the round tundish is short, its inclusion removal efficiency is too low, and it has more dead zones and an unreasonable flow field. Compared with the round tundish, the improved oval tundish with the optimized weir and dam has a better effect: its minimum residence time is prolonged by 38.1 s, the average residence time is prolonged by 233.4 s, its dead volume fraction decreases from 26% to 15%, and the ratio of plug volume fraction to dead volume fraction increases from 0.54 to 1.27. The inclusion removal efficiency also increases by 17.5%.展开更多
Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a ...Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation.展开更多
Metro passenger flow control problem is studied under given total inbound demand in this work,which considers passenger demand control and train capacity supply.Relevant connotations are analyzed and a mathematical mo...Metro passenger flow control problem is studied under given total inbound demand in this work,which considers passenger demand control and train capacity supply.Relevant connotations are analyzed and a mathematical model is developed.The decision variables are boarding limiting and stop-skipping strategies and the objective is the maximal passenger profit.And a passenger original station choice model based on utility theory is built to modify the inbound passenger distribution among stations.Algorithm of metro passenger flow control scheme is designed,where two key technologies of stopping-station choice and headway adjustment are given and boarding limiting and train stopping-station scheme are optimized.Finally,a real case of Beijing metro is taken for example to verify validity.The results show that in the three scenarios with different ratios of normal trains to stop-skipping trains,the total limited passenger volume is the smallest and the systematic profit is the largest in scenario 3.展开更多
Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are c...Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interthce plane (AIP) face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC) effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the monlcntunl coefficient affects the control effectiveness in a dual stepping manner.展开更多
An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular c...An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.展开更多
In terms of multiple temporal and spatial scales, massive data from experiments, flow field measurements, and high-fidelity numerical simulations have greatly promoted the rapid development of fluid mechanics. Machine...In terms of multiple temporal and spatial scales, massive data from experiments, flow field measurements, and high-fidelity numerical simulations have greatly promoted the rapid development of fluid mechanics. Machine Learning(ML) provides a wealth of analysis methods to extract potential information from a large amount of data for in-depth understanding of the underlying flow mechanism or for further applications. Furthermore, machine learning algorithms can enhance flow information and automatically perform tasks that involve active flow control and optimization. This article provides an overview of the past history, current development, and promising prospects of machine learning in the field of fluid mechanics. In addition, to facilitate understanding, this article outlines the basic principles of machine learning methods and their applications in engineering practice, turbulence models, flow field representation problems, and active flow control. In short, machine learning provides a powerful and more intelligent data processing architecture, and may greatly enrich the existing research methods and industrial applications of fluid mechanics.展开更多
The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttl...The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable.展开更多
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio...Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.展开更多
The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low mag...The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation.A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma.Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected.On the basis of the relative position of control area and separation point,MHD control can be divided into four types and so effects and mechanisms might be different.Amongst these,D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region.A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied.The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.展开更多
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.92371201,52192633,11872293,and 92152301)the Natural Science Basic Research Program of Shaanxi(Grant Nos.2024JC-YBQN-0008,and 2022JC-03)+1 种基金Shaanxi Key Research and Development Program(Grant No.2022ZDLGY02-07)the Joint Natural Science Foundation of China with Guangdong Province for TianHe-II Supercomputer Resources,and the Research Start-up Foundation of Xi’an University of Science and Technology for the High-Level Talent.
文摘The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.
基金Project(52476095)supported by the National Natural Science Foundation of ChinaProject(kq2506013)supported by Changsha Outstanding Innovative Youth Training Program,China。
文摘The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.
基金supported by the National Natural Science Foundation of China (Grant No.92271107)。
文摘An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator's performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement;a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root.
文摘Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recurrent instances of substantial passenger influxes, a methodology predicated on stochastic processesand the principle of user equilibrium is introduced to facilitate real-time traffic flow estimation within transferstation streamlines.Design/methodology/approach – The synthesis of stochastic process theory with streamline analysisengenders a probabilistic model of intra-station pedestrian traffic dynamics. Leveraging real-time passengerflow data procured from monitoring systems within the transfer station, a gradient descent optimizationtechnique is employed to minimize the cost function, thereby deducing the dynamic distribution of categorizedpassenger flows. Subsequently, adhering to the tenets of user equilibrium, the Frank–Wolfe algorithm isimplemented to allocate the intra-station categorized passenger flows across various streamlines, ascertainingthe traffic volume for each.Findings – Utilizing the Xiaozhai Station of the Xi’an Metro as a case study, the Anylogic simulation softwareis engaged to emulate the intra-station crowd dynamics, thereby substantiating the efficacy of the proposedpassenger flow estimation model. The derived solutions are instrumental in formulating a crowd controlstrategy for Xiaozhai Station during the peak interval from 17:30 to 18:00 on a designated day, yielding crowdmanagement interventions that offer insights for the orchestration of passenger flow and operationalgovernance within metro stations.Originality/value – The construction of an estimation methodology for the real-time streamline traffic flowaugments the model’s dataset, supplanting estimated values derived from surveys or historical datasets withreal-time computed traffic data, thereby enhancing the precision and immediacy of crowd flow managementwithin metro stations.
文摘The explicit rate flow control mechanisms for ABR service are used to sharethe available bandwidth of a bottleneck link fairly and reasonably among many competitive users andto maintain the buffer queue length of a bottleneck switch connected to the link at a desired levelin order to avoid and control congestion in ATM networks. However, designing effective flow controlmechanisms for the service is known to be difficult because of the variety of dynamic parametersinvolved such as available link bandwidth, burst of the traffic, the distances between ABR sourcesand switches. In this paper, we present a fuzzy explicit rate flow control mechanism for ABRservice. The mechanism has a simple structure and is robust in the sense that the mechanism'sstability is not sensitive to the change in the number of active virtual connections (VCs). Manysimulations show that this mechanism can not only effectively avoid network congestion, but alsoensure fair share of the bandwidth for all active VCs regardless of the number of hops theytraverse. Additionally, it has the advantages of fast convergence, low oscillation, and high linkbandwidth utilization.
基金National Natural Science Foundation of China(50776100)
文摘This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpose of the experiments is to take advantage of MHD interaction to weaken the oblique shock wave strength by changing the boundary flow characteristics around the ramp. Plasma columns are generated by pulsed direct current ( DC ) discharge, the magnetic fields are generated by Nd-Fe-B rare-earth permanent magnets and the oblique shock waves in supersonic flow are generated by the ramp. The Lorentz body force effect of MHD interaction on the plasma-induced airflow velocity is verified through particle image velocimetry(PIV)measurements. The experimental results from the supersonic wind tunnel indicate that the MHD flow control can drastically change the flow characteristics of the airflow around the ramp and decrease the ratio of the Pitot pressure after shock wave to that before it by up to 19.66% ,which leads to the decline in oblique shock wave strength. The oblique shock waves in front of the ramp move upstream by the action of the Lorentz body force. The discharge characteristics are analyzed and the MHD interaction time and consumed energy are determined with the help of the pulsed DC discharge images. The interaction parameter corresponding to the boundary layer velocity can reach 1.3 from the momentum conservation equation. The velocity of the plasma column in the magnetic field is much faster than that in the absence of magnetic field force. The plasma can strike the neutral gas molecules to transfer momentum and accelerate the flow around the ramp.
文摘The optimization of flow control devices in a single-slab continuous casting tundish was carried out by physical modeling, and the optimized scheme was presented. With the optimal tundish configuration, the minimum residence time of liquid steel was increased by 1.4 times, the peak concentration time was increased by 97%, and the dead volume fraction was decreased by 72%. A mathematical model for molten steel in the tundish was established by using the fluid dynamics package Fluent. The velocity field, concentration field, and the resi-dence time distribution (RTD) curves of molten steel flow before and after optimization were obtained. Experimental results showed that the reasonable configuration with flow control devices can improve the fluid flow characteristics in the tundish. The results of industrial applica-tion show that the nonmetallic inclusion area ratio in casting slabs is decreased by 32% with the optimal tundish configuration.
基金Item Sponsored by National High Technology Research and Development Plan of China(2007AA04Z194)
文摘A 1∶2.5 scale tundish model was set up in laboratory for a six-strand billet continuous casting tundish with different configurations to investigate fluid flow characteristics under different operational conditions by measuring residence time distribution curves.It was found that minimum residence time,maximum concentration time and average residence time of the three strands on the same side of the tundish with the former configuration under normal operation,that is,six strands were open,were small and non-uniform and the tundish had large dead volume fraction.Vortexes easily formed on the liquid surface in the pouring zone of the tundish.The fluid flow characteristics in the tundish with the optimal turbulence inhibitor and baffles were improved and became less non-uniform among the strands.Vortexes were not found on the pouring zone surface in the optimal tundish.For non-normal operation,that is,one strand was close,it was important to choose which strand to be closed for maintaining flow characteristics of the rest two strands.It was found from this investigation that fluid flow characteristics in the optimal configuration tundish with closing strand 2 were better than those with closing strand 3 on the same side.
文摘The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with moderate load. The static and dynamic characteristics of the guide have been studied by using some theoretical, numerical and experimental approaches, and some methods and measures have been proposed to improve its performances. The hydrostatic guide based on progressive mengen(PM) flow controller is especially suitable for the heavy numerical control(NC) machine tools. However, few literatures about the research on the static and dynamic characteristics of the hydrostatic guides based on PM flow controller are reported. In this paper, the formulae are derived for analyzing the static and dynamic characteristics of hydrostatic guides with rectangle pockets and PM flow controller according to the theory of hydrostatic bearing. On the basis of the analysis of hydrostatic bearing with circular pocket, some equations are derived for solving the static pressure, volume pressure and squeezing pressure which influence the dynamic characteristics of hydrostatic guides with rectangle pocket. The function and the influencing factors of three pressures are clarified. The formulae of amplitude-frequency characteristics and dynamic stiffness of the hydrostatic guide system are derived. With the help of software MATLAB, programs are coded with C++ language to simulate numerically the static and dynamic characteristics of the hydrostatic guide based on PM flow controller. The simulation results indicate that the sensitive oil volume between the outlet of the PM flow controller and the guide pocket has the greatest influence on the characteristics of the guide, and it should be reduced as small as possible when the field working condition is met. Choosing the oil with a greater viscosity is also helpful in improving the dynamic performance of hydrostatic guides. The research work has instructing significance for analyzing and designing the guide with PM flow controller.
文摘A new gust load alleviation technique is presented in this paper based on active flow control. Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi "Global Hawk" airfoil using arrays of jets during the gust process. Based on unsteady Navier-Stokes equations, the grid-velocity method is introduced to simulate the gust influence, and dynamic response in vertical gust flow perturbation is investigated for the airfoil as well. An unsteady surface transpiration boundary condition is enforced over a user specified portion of the airfoil’s surface to emulate the time dependent velocity boundary conditions. Firstly, after applying this method to simulate typical NACA0006 airfoil gust response to a step change in the angle of attack, it shows that the indicial responses of the airfoil make good agreement with the exact theoretical values and the calculated values in references. Furthermore, gust response characteristic for the quasi "Global Hawk" airfoil is analyzed. Five kinds of flow control techniques are introduced as steady blowing, steady suction, unsteady blowing, unsteady suction and synthetic jets. The physical analysis of the influence on the effects of gust load alleviation is proposed to provide some guidelines for practice. Numerical results have indicated that active flow control technique,as a new technology of gust load alleviation, can affect and suppress the fluid disturbances caused by gust so as to achieve the purpose of gust load alleviation.
基金financially supported by the Key Special Project in the National Science & Technology Program during the Eleventh Five-Year Plan Period (No.2009ZX04014-061-7)
文摘The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which was used instead of the round tundish, had been optimized. The results show that the residence time of the round tundish is short, its inclusion removal efficiency is too low, and it has more dead zones and an unreasonable flow field. Compared with the round tundish, the improved oval tundish with the optimized weir and dam has a better effect: its minimum residence time is prolonged by 38.1 s, the average residence time is prolonged by 233.4 s, its dead volume fraction decreases from 26% to 15%, and the ratio of plug volume fraction to dead volume fraction increases from 0.54 to 1.27. The inclusion removal efficiency also increases by 17.5%.
文摘Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation.
基金Projects(RCS2015ZZ002,RCS2014ZT25)supported by State Key Laboratory of Rail Traffic Control&Safety,ChinaProject(2015RC058)supported by Beijing Jiaotong University,China
文摘Metro passenger flow control problem is studied under given total inbound demand in this work,which considers passenger demand control and train capacity supply.Relevant connotations are analyzed and a mathematical model is developed.The decision variables are boarding limiting and stop-skipping strategies and the objective is the maximal passenger profit.And a passenger original station choice model based on utility theory is built to modify the inbound passenger distribution among stations.Algorithm of metro passenger flow control scheme is designed,where two key technologies of stopping-station choice and headway adjustment are given and boarding limiting and train stopping-station scheme are optimized.Finally,a real case of Beijing metro is taken for example to verify validity.The results show that in the three scenarios with different ratios of normal trains to stop-skipping trains,the total limited passenger volume is the smallest and the systematic profit is the largest in scenario 3.
基金co-supported by the Postdoctoral Foundation of China (Nos. 2013M542525, 2014T71019)
文摘Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interthce plane (AIP) face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC) effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the monlcntunl coefficient affects the control effectiveness in a dual stepping manner.
文摘An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.
基金supported by the National Natural Science Foundation of China(No.11972139)。
文摘In terms of multiple temporal and spatial scales, massive data from experiments, flow field measurements, and high-fidelity numerical simulations have greatly promoted the rapid development of fluid mechanics. Machine Learning(ML) provides a wealth of analysis methods to extract potential information from a large amount of data for in-depth understanding of the underlying flow mechanism or for further applications. Furthermore, machine learning algorithms can enhance flow information and automatically perform tasks that involve active flow control and optimization. This article provides an overview of the past history, current development, and promising prospects of machine learning in the field of fluid mechanics. In addition, to facilitate understanding, this article outlines the basic principles of machine learning methods and their applications in engineering practice, turbulence models, flow field representation problems, and active flow control. In short, machine learning provides a powerful and more intelligent data processing architecture, and may greatly enrich the existing research methods and industrial applications of fluid mechanics.
基金Supported by National Natural Science Foundation of China(Grant No.51805350)Key Technologies Research and Development Program of China(Grant No.2018YFB2001202)+1 种基金Natural Science Foundation of Shanxi Province of China(Grant No.201801D221226)Postdoctoral Science Foundation of China(Grant No.2019M651073).
文摘The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable.
基金supported the National Natural Science Foundation of China (71621001, 71825004, and 72001019)the Fundamental Research Funds for Central Universities (2020JBM031 and 2021YJS203)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety (RCS2020ZT001)
文摘Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.
基金Project supported by the National Key R&D Program of China(Nos.2019YFA0405300 and 2019YFA0405203)the Chinese Scholarship Council(CSC)(No.201903170195)。
文摘The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation.A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma.Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected.On the basis of the relative position of control area and separation point,MHD control can be divided into four types and so effects and mechanisms might be different.Amongst these,D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region.A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied.The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.