Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
ABSTRACT Current computerized pulse diagnosis is mainly based on pressure and photoelectric signal. Considering the richness and complication of pulse diagnosis information, it is valuable to explore the feasibility o...ABSTRACT Current computerized pulse diagnosis is mainly based on pressure and photoelectric signal. Considering the richness and complication of pulse diagnosis information, it is valuable to explore the feasibility of novel types of signal and to develop appropriate feature representation for diagnosis. In this paper, we present a study on computerized pulse diagnosis based on blood flow velocity signal. First, the blood flow velocity signal is collected using Doppler ultrasound device and preprocessed. Then, by locating the fiducial points, we extract the spatial features of blood flow velocity signal, and further present a Hilbert-Huang transform-based method for spectrum feature extraction. Finally, support vector machine is applied for computerized pulse diagnosis. Experiment results show that the proposed method is effective and promising in distinguishing healthy people from patients with cho- lecystitis or nephritis.展开更多
Based on the Naviev-Stokes equations and the standard κ-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the ...Based on the Naviev-Stokes equations and the standard κ-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the turbulent flow through a draft tube is set up when the boundary conditions, including the inlet boundary conditions, the outlet boundary conditions and the wall boundary conditions, have been implemented. The governing equations are formulated in a discrete form on a staggered grid system by the finite volume method. The second-order central difference approximation and hybrid scheme are used for discretization. The computation and analysis on internal flow through a draft tube have been carried out by using the simplee algorithm and cfx-tasc flow software so as to obtain the simulated flow fields. The calculation results at the design operating condition for the draft tube are presented in this paper. Thereby, an effective method for simulating the internal flow field in a draft tube has been explored.展开更多
First, a model of static data flow computer and a model of data flow graph are pro-posed; then a model of system is presented to calculate practical parallelism degree withoverhead of instruction execution on data flo...First, a model of static data flow computer and a model of data flow graph are pro-posed; then a model of system is presented to calculate practical parallelism degree withoverhead of instruction execution on data flow computers as its parameter. From the compu-tation, the maximum practical parallelism degree of a program running on a static dataflow computer is determined with MP/OH (MP is the mean parallelism degree of a program,OH is the overhead of instruction execution on the computer). Therefore the overhead hasgreat influence on the performance of a data flow computer.展开更多
Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer....Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.展开更多
A numerical analysis of Newtonian and non-Newtonian flow in an axi-symmetric tube with a local constriction simulating a stenosed artery under steady and pulsatile flow conditions war carried out. Bared on these resul...A numerical analysis of Newtonian and non-Newtonian flow in an axi-symmetric tube with a local constriction simulating a stenosed artery under steady and pulsatile flow conditions war carried out. Bared on these results, the concentration fields of LDL ( (low-density lipoprotein) and Albumin were discussed. According to the results, in great details the macromolecule transport influences of wall shear stress, non-Newtonian fluid character and the scale of the molecule etc are given. The results of Newtonian fluid flow and non-Newtonian fluid flow, steady flow and pulsatile flow are compared. These investigations can provide much valuable information about the correlation between the flow properties, the macromolecule transport and the development of atherosclerosis.展开更多
Most of water flow in open channel or in river belongs to steady non-uniform flow. The surface profiles are caused by changes of channel section. It is very important to analyze its computation. According to the regu...Most of water flow in open channel or in river belongs to steady non-uniform flow. The surface profiles are caused by changes of channel section. It is very important to analyze its computation. According to the regularity of its surface change, the suitable sectional dimensions of open channel or flood control work can be designed. Commonly, computation of non-uniform flow adopts the traditional methods by hand or by graphic method. The speed and precision of computation are restricted. In this paper, a software to calculate water surface profile is introduced. The software is put forward by using C++ .By means of interpolate method and dialogue between user and computer, we can calculate the water surface profile much more quickly and exactly.展开更多
The rate-based feedback PD-P controller of two freedom-degrees is proposed for the congestion control in computer networks to improve the abilities against disturbance. Moreover, the Dahlin algorithm is used for setti...The rate-based feedback PD-P controller of two freedom-degrees is proposed for the congestion control in computer networks to improve the abilities against disturbance. Moreover, the Dahlin algorithm is used for setting the controller to overcome the adverse effect caused by the propagation delay effectively. The research results show that the proposed scheme not only can make sources respond to the changes of network state more quickly, but also has a good robustness against estimated error of the delay. Then the packet queue level in buffer will be stabilized on the set-point quickly, and the delay and its jitter of the packet queuing will also become smaller. Besides, the flexible bandwidth allotment can be obtained by setting the weight coefficients.展开更多
New methodology of designing the differential pressure flow meters for fluid energy carriers is developed in order to provide minimum uncertainty of results of flow rate measurement. This methodology is implemented in...New methodology of designing the differential pressure flow meters for fluid energy carriers is developed in order to provide minimum uncertainty of results of flow rate measurement. This methodology is implemented in “Raskhod-RU” CAD system for computer aided design and calculation of differential pressure flow meters. “Raskhod-RU” CAD meets the requirements of new Standards implemented in CIS countries (GOST 8.586.1,2,3,4,5-2005) and provides accomplishment of the following tasks: verification of conditions (constraints) for application of the differential pressure method according to the requirements of new Standards;calculation of parameters of primary device, pipe straight lengths and flow meter in general according to the requirements of new Standards;calculation of uncertainty of results of fluid flow rate and volume measurement.展开更多
The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated...The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated texts by using the web search engine correctly, inquire about the correct translation methods of the rare professional terms, apply the fixed sentence patterns, and check the correctness of the translation, so as to improve the translation speed and quality.展开更多
The multiphase flow in a Peirce-Smith copper converter is numerically explored in this work. Molten matte, molten slag and air are the phases considered. The transient partial differential equations that constitute th...The multiphase flow in a Peirce-Smith copper converter is numerically explored in this work. Molten matte, molten slag and air are the phases considered. The transient partial differential equations that constitute the mathematical model are discretized using a two-dimensional computational mesh. The Computational Fluid Dynamics technique is employed to numerically solve the discretized equations. The aim of the numerical analysis is to study the influence of the nozzle height on the phase distributions inside the converter. Three values of the nozzle heights are considered.展开更多
Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and...Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and gas extraction.Central to this phenomenon is the transport of proppants,tiny solid particles injected into the fractures to prevent them from closing once the injection is stopped.However,effective transport and deposition of proppant is critical in keeping fracture pathways open,especially in lowpermeability reservoirs.This review explores,then quantifies,the important role of fluid inertia and turbulent flows in governing proppant transport.While traditional models predominantly assume and then characterise flow as laminar,this may not accurately capture the complexities inherent in realworld hydraulic fracturing and proppant emplacement.Recent investigations highlight the paramount importance of fluid inertia,especially at the high Reynolds numbers typically associated with fracturing operations.Fluid inertia,often overlooked,introduces crucial forces that influence particle settling velocities,particle-particle interactions,and the eventual deposition of proppants within fractures.With their inherent eddies and transient and chaotic nature,turbulent flows introduce additional complexities to proppant transport,crucially altering proppant settling velocities and dispersion patterns.The following comprehensive survey of experimental,numerical,and analytical studies elucidates controls on the intricate dynamics of proppant transport under fluid inertia and turbulence-towards providing a holistic understanding of the current state-of-the-art,guiding future research directions,and optimising hydraulic fracturing practices.展开更多
This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with ...This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
文摘ABSTRACT Current computerized pulse diagnosis is mainly based on pressure and photoelectric signal. Considering the richness and complication of pulse diagnosis information, it is valuable to explore the feasibility of novel types of signal and to develop appropriate feature representation for diagnosis. In this paper, we present a study on computerized pulse diagnosis based on blood flow velocity signal. First, the blood flow velocity signal is collected using Doppler ultrasound device and preprocessed. Then, by locating the fiducial points, we extract the spatial features of blood flow velocity signal, and further present a Hilbert-Huang transform-based method for spectrum feature extraction. Finally, support vector machine is applied for computerized pulse diagnosis. Experiment results show that the proposed method is effective and promising in distinguishing healthy people from patients with cho- lecystitis or nephritis.
基金Supported by the National Natural Science Foundation of China(10162002) the Key Project of Chinese Ministry Education (204138) the Sci-ence Foundation of Yunnan Education Bureau(5Y0020A)
文摘Based on the Naviev-Stokes equations and the standard κ-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the turbulent flow through a draft tube is set up when the boundary conditions, including the inlet boundary conditions, the outlet boundary conditions and the wall boundary conditions, have been implemented. The governing equations are formulated in a discrete form on a staggered grid system by the finite volume method. The second-order central difference approximation and hybrid scheme are used for discretization. The computation and analysis on internal flow through a draft tube have been carried out by using the simplee algorithm and cfx-tasc flow software so as to obtain the simulated flow fields. The calculation results at the design operating condition for the draft tube are presented in this paper. Thereby, an effective method for simulating the internal flow field in a draft tube has been explored.
文摘目的基于4D Flow MRI技术探究急性心肌梗死患者左心室(left ventricular,LV)腔内局部血流动能(kinetic energy,KE)改变。方法纳入30名急性心肌梗死(acute myocardial infarction,AMI)患者和20名对照者。应用4D Flow MRI技术定量评价左心室腔内血流动能,包括左心室平均动能、最小动能、收缩期动能、舒张期动能以及平面内动能(in-plane kinetic energy,In-plane KE)百分比。比较心肌梗死组和对照组之间以及梗死节段与非梗死节段之间血流动能参数的差异。结果与对照组相比,急性心肌梗死组左心室整体平均动能(10.7μJ/mL±3.3 vs 14.7μJ/mL±3.6,P<0.001)、收缩期动能(14.6μJ/mL±5.1 vs 18.9μJ/mL±3.9,P=0.003)及舒张期动能(7.9μJ/mL±2.5 vs 10.6μJ/mL±3.8,P=0.018)均显著降低,其中梗死节段较非梗死节段邻近心腔血流的平均动能降低而收缩期平面内动能百分比增加(49.5μJ/mL±18.7 vs 126.3μJ/mL±50.7,P<0.001;61.8%±11.5 vs 42.9%±14.4,P=0.001)。结论4D Flow MRI技术可定量评价左心室腔内局部血流动能参数。急性心肌梗死后整体心腔血流动能减低,而梗死节段邻近心腔局部血流平面内动能百分比增加。
文摘First, a model of static data flow computer and a model of data flow graph are pro-posed; then a model of system is presented to calculate practical parallelism degree withoverhead of instruction execution on data flow computers as its parameter. From the compu-tation, the maximum practical parallelism degree of a program running on a static dataflow computer is determined with MP/OH (MP is the mean parallelism degree of a program,OH is the overhead of instruction execution on the computer). Therefore the overhead hasgreat influence on the performance of a data flow computer.
文摘Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.
文摘A numerical analysis of Newtonian and non-Newtonian flow in an axi-symmetric tube with a local constriction simulating a stenosed artery under steady and pulsatile flow conditions war carried out. Bared on these results, the concentration fields of LDL ( (low-density lipoprotein) and Albumin were discussed. According to the results, in great details the macromolecule transport influences of wall shear stress, non-Newtonian fluid character and the scale of the molecule etc are given. The results of Newtonian fluid flow and non-Newtonian fluid flow, steady flow and pulsatile flow are compared. These investigations can provide much valuable information about the correlation between the flow properties, the macromolecule transport and the development of atherosclerosis.
文摘Most of water flow in open channel or in river belongs to steady non-uniform flow. The surface profiles are caused by changes of channel section. It is very important to analyze its computation. According to the regularity of its surface change, the suitable sectional dimensions of open channel or flood control work can be designed. Commonly, computation of non-uniform flow adopts the traditional methods by hand or by graphic method. The speed and precision of computation are restricted. In this paper, a software to calculate water surface profile is introduced. The software is put forward by using C++ .By means of interpolate method and dialogue between user and computer, we can calculate the water surface profile much more quickly and exactly.
文摘The rate-based feedback PD-P controller of two freedom-degrees is proposed for the congestion control in computer networks to improve the abilities against disturbance. Moreover, the Dahlin algorithm is used for setting the controller to overcome the adverse effect caused by the propagation delay effectively. The research results show that the proposed scheme not only can make sources respond to the changes of network state more quickly, but also has a good robustness against estimated error of the delay. Then the packet queue level in buffer will be stabilized on the set-point quickly, and the delay and its jitter of the packet queuing will also become smaller. Besides, the flexible bandwidth allotment can be obtained by setting the weight coefficients.
文摘New methodology of designing the differential pressure flow meters for fluid energy carriers is developed in order to provide minimum uncertainty of results of flow rate measurement. This methodology is implemented in “Raskhod-RU” CAD system for computer aided design and calculation of differential pressure flow meters. “Raskhod-RU” CAD meets the requirements of new Standards implemented in CIS countries (GOST 8.586.1,2,3,4,5-2005) and provides accomplishment of the following tasks: verification of conditions (constraints) for application of the differential pressure method according to the requirements of new Standards;calculation of parameters of primary device, pipe straight lengths and flow meter in general according to the requirements of new Standards;calculation of uncertainty of results of fluid flow rate and volume measurement.
文摘The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated texts by using the web search engine correctly, inquire about the correct translation methods of the rare professional terms, apply the fixed sentence patterns, and check the correctness of the translation, so as to improve the translation speed and quality.
文摘The multiphase flow in a Peirce-Smith copper converter is numerically explored in this work. Molten matte, molten slag and air are the phases considered. The transient partial differential equations that constitute the mathematical model are discretized using a two-dimensional computational mesh. The Computational Fluid Dynamics technique is employed to numerically solve the discretized equations. The aim of the numerical analysis is to study the influence of the nozzle height on the phase distributions inside the converter. Three values of the nozzle heights are considered.
基金the Australian Research Council Discovery Project(ARC DP 220100851)scheme and would acknowledge that.
文摘Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and gas extraction.Central to this phenomenon is the transport of proppants,tiny solid particles injected into the fractures to prevent them from closing once the injection is stopped.However,effective transport and deposition of proppant is critical in keeping fracture pathways open,especially in lowpermeability reservoirs.This review explores,then quantifies,the important role of fluid inertia and turbulent flows in governing proppant transport.While traditional models predominantly assume and then characterise flow as laminar,this may not accurately capture the complexities inherent in realworld hydraulic fracturing and proppant emplacement.Recent investigations highlight the paramount importance of fluid inertia,especially at the high Reynolds numbers typically associated with fracturing operations.Fluid inertia,often overlooked,introduces crucial forces that influence particle settling velocities,particle-particle interactions,and the eventual deposition of proppants within fractures.With their inherent eddies and transient and chaotic nature,turbulent flows introduce additional complexities to proppant transport,crucially altering proppant settling velocities and dispersion patterns.The following comprehensive survey of experimental,numerical,and analytical studies elucidates controls on the intricate dynamics of proppant transport under fluid inertia and turbulence-towards providing a holistic understanding of the current state-of-the-art,guiding future research directions,and optimising hydraulic fracturing practices.
文摘This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.