The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an upda...The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.展开更多
The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack...The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed.展开更多
Impulsively starting flow, by a sudden attainment of a large angle of attack, has been well studied for incompressible and supersonic flows, but less studied for subsonic flow. Recently,a preliminary numerical study f...Impulsively starting flow, by a sudden attainment of a large angle of attack, has been well studied for incompressible and supersonic flows, but less studied for subsonic flow. Recently,a preliminary numerical study for subsonic starting flow at a high angle of attack displays an advance of stall around a Mach number of 0.5, when compared to other Mach numbers. To see what happens in this special case, we conduct here in this paper a further study for this case, to display and analyze the full flow structures. We find that for a Mach number around 0.5, a local supersonic flow region repeatedly splits and merges, and a pair of left-going and right-going unsteady shock waves are embedded inside the leading edge vortex once it is sufficiently grown up and detached from the leading edge. The flow evolution during the formation of shock waves is displayed in detail. The reason for the formation of these shock waves is explained here using the Laval nozzle flow theory. The existence of this shock pair inside the vortex, for a Mach number only close to 0.5, may help the growing of the trailing edge vortex responsible for the advance of stall observed previously.展开更多
基金The project supported by the National Natural Science Foundation of China(10172017)Aeronautical Science Foundation of China(02A51048)Foundation of National Key Laboratory of Aerodynamic Design and Research(51462020504HK0101)
文摘The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.
文摘The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed.
基金supported by the National Natural Science Foundation of China(No.11472157)
文摘Impulsively starting flow, by a sudden attainment of a large angle of attack, has been well studied for incompressible and supersonic flows, but less studied for subsonic flow. Recently,a preliminary numerical study for subsonic starting flow at a high angle of attack displays an advance of stall around a Mach number of 0.5, when compared to other Mach numbers. To see what happens in this special case, we conduct here in this paper a further study for this case, to display and analyze the full flow structures. We find that for a Mach number around 0.5, a local supersonic flow region repeatedly splits and merges, and a pair of left-going and right-going unsteady shock waves are embedded inside the leading edge vortex once it is sufficiently grown up and detached from the leading edge. The flow evolution during the formation of shock waves is displayed in detail. The reason for the formation of these shock waves is explained here using the Laval nozzle flow theory. The existence of this shock pair inside the vortex, for a Mach number only close to 0.5, may help the growing of the trailing edge vortex responsible for the advance of stall observed previously.