期刊文献+
共找到228,134篇文章
< 1 2 250 >
每页显示 20 50 100
Electromagnetic swirling flow control in nozzle in slab continuous casting
1
作者 Xiao-wei Zhu Xian-cun Liu +5 位作者 Li-jia Zhao De-wei Li Chen Tian Kai Wang Bai-gang Jin Qiang Wang 《Journal of Iron and Steel Research International》 2025年第4期935-949,共15页
The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic for... The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic forces,EMSFN stabilizes the flow within the nozzle,leading to a more controlled flow in the mold.Numerical simulations were used to quantitatively analyze the magnetic and flow fields in a slab continuous casting system under EMSFN.Results indicate that EMSFN significantly stabilizes the outflow from the nozzle,with stability increasing with higher current intensity.At 10,000 Ampere-turns(At)of the coil,meniscus fluctuations were unstable.They stabilized at 13,000 At,with minimal changes observed beyond this point.The optimal current intensity for stable mold flow,at a casting speed of 1.56 m/min,is 13,000 At.These findings confirm the effectiveness of EMSFN in stabilizing the internal flow field of the slab mold and determining optimal operational current intensity. 展开更多
关键词 Electromagnetic swirling flow Submerged entry nozzle Continuous casting flow stabilization Meniscus fluctuation Impact depth flow symmetry
原文传递
Vegetation-induced hydrodynamic alterations on convex slopes:Mechanisms of flow resistance and erosion control
2
作者 GU Fangzheng ZHANG Huilan +4 位作者 GAO Huiru YUAN Weicheng ZHANG Di WANG Linghan LI Feng 《Journal of Mountain Science》 2025年第9期3167-3182,共16页
The hydrodynamic response of overland flow to vegetation coverage on convex slopes remains inadequately quantified despite it is critical for soil erosion control in terrains dominated by such topography.This study sy... The hydrodynamic response of overland flow to vegetation coverage on convex slopes remains inadequately quantified despite it is critical for soil erosion control in terrains dominated by such topography.This study systematically investigated the influence of varying vegetation coverage(0%,1.08%,3.24%,4.69%and 9.81%)on the hydrodynamic characteristics of convex slopes through indoor flume experiments under diverse flow discharges(5.5-13.5 m^(3)/h)and slopes(5°-25°).The results revealed three key hydrodynamic mechanisms:(1)Flow retardation and energy dissipation:Increasing vegetation coverage significantly reduced overland flow velocity and promoted higher flow depth,thereby enhancing water retention and energy dissipation.Both stream power(Ω)and unit stream power(ω)declined by 13.9%-30.1%compared to bare slopes.(2)Flow Regime Transition:Froude number(Fr)decreased with increasing vegetation coverage,promoting the transition from supercritical to subcritical flow.The Reynolds number(Re)consistently exceeded 500,indicating the absence of laminar flow.(3)Modification of flow resistance:Vegetation resistance increased nonlinearly with coverage.Maximum bed shear stress was observed at 4.69%coverage(23.5%higher than bare slopes).However,Manning’s(n)and Darcy-Weisbach(f)coefficients did not correlate clearly with Re,indicating that vegetation coverage and slope type feedback significantly change flow resistance mechanisms. 展开更多
关键词 Overland flow Convex slope Vegetation coverage flow depth and velocity flow regime Vegetation resistance
原文传递
Measurement of unsteady force on rotor blade surfaces in axial flow compressor
3
作者 Jingyuan LIU Jichao LI +2 位作者 Feng PENG Yang LIU Hongwu ZHANG 《Chinese Journal of Aeronautics》 2025年第2期31-45,共15页
To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinat... To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinate system.The capture,modulation,and acquisition of unsteady blade surface forces are achieved by using pressure sensors and strain gauges attached to the rotor blades,in conjunction with a wireless telemetry system.Based on the measurement reliability verification,this approach allows for the determination of the static pressure distribution on rotor blade surfaces,enabling the quantitative description of loadability at different spanwise positions along the blade chord.Effects caused by the factors such as Tip Leakage Flow(TLF)and flow separation can be perceived and reflected in the trends of static pressure on the blade surfaces.Simultaneously,the dynamic characteristics of unsteady pressure and stress on the blade surfaces are analyzed.The results indicate that only the pressure signals measured at the mid-chord of the blade tip can distinctly detect the unsteady frequency of TLF due to the oscillation of the low-pressure spot on the pressure surface.Subsequently,with the help of one-dimensional continuous wavelet analysis method,it can be inferred that as the compressor enters stall,the sensors are capable of capturing stall cell frequency under a rotating coordinate system.Furthermore,the stress at the blade root is higher than that at the blade tip,and the frequency band of the vibration can also be measured by the pressure sensors fixed on the casing wall in a stationary frame.While the compressor stalls,the stress at the blade root can be higher,which can provide valuable guidance for monitoring the lifecycle of compressor blades. 展开更多
关键词 Axial flow compressor Unsteady blade surface force Wireless telemetry Tip leakage flow Vibration characteristic Unsteady flow
原文传递
Identification and classification of solid-liquid flow patterns in deviated and horizontal annuli
4
作者 Di Yao Xiaofeng Sun Jingyu Qu 《Natural Gas Industry B》 2025年第3期386-404,共19页
During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optim... During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli. 展开更多
关键词 Solid-liquid two-phase flow flow pattern map flow pattern transformation Cuttings transport Drilling hydraulic
在线阅读 下载PDF
Experimental analysis of internal flow and spray characteristics of flow focusing/blurring nozzle
5
作者 Jin Zhao Zhi Ning +1 位作者 Ming Lv Xu He 《Chinese Journal of Chemical Engineering》 2025年第7期111-124,共14页
This study utilizes a visualization nozzle and spray experimental platform to experimentally investigate the flow focusing/blurring nozzle.It is found that the working mode of the nozzle transitions from flow focusing... This study utilizes a visualization nozzle and spray experimental platform to experimentally investigate the flow focusing/blurring nozzle.It is found that the working mode of the nozzle transitions from flow focusing to flow transition and eventually to flow blurring as the gas flow rate increases or the tube hole distance decreases.Conversely,an increase in liquid flow rate only facilitates the transition from flow focusing to flow transition.Changes in the gas/liquid flow rate or tube hole distance influence the gas shear effect and the gas inertial impact effect inside the nozzle,which in turn alters the working mode.An increase in gas flow rate results in a shift of the droplet size distribution towards smaller particle sizes in the flow blurring mode,whereas an increase in liquid flow rate produces the opposite effect.Notably,the impact of the gas flow rate on these changes is more pronounced than that of the liquid flow rate. 展开更多
关键词 flow focusing/blurring nozzle Working mode Gaseliquid flow Multiphase flow Particle size distribution
在线阅读 下载PDF
Multiphase Vertical Slug Flow Hydrodynamics with Hydrate Phase Transition
6
作者 WANG Yangyang LIANG Weixing +1 位作者 LOU Min WANG Yu 《Journal of Ocean University of China》 2025年第4期941-953,共13页
Hydrate phase transition may pose risks in pipeline blockage and severe challenges for offshore natural gas hydrate pro-duction.The present work involves the development of a multiphase gas-liquid-solid vertical slug ... Hydrate phase transition may pose risks in pipeline blockage and severe challenges for offshore natural gas hydrate pro-duction.The present work involves the development of a multiphase gas-liquid-solid vertical slug flow hydrodynamic model consi-dering hydrate phase transition kinetics with heat and mass transfer behaviors.The varying gas physical properties due to pressure and temperature variations are also introduced to evaluate vertical slug flow characteristics.The proposed model is used to carry out a series of numerical simulations to examine the interactions between hydrate phase transition and vertical slug flow hydrodynamics.Furthermore,the hydrate volumetric fractions under different pressure and temperature conditions are predicted.The results reveal that hydrate formation and gas expansion cause the mixture superficial velocity,and the gas and liquid fractions,void fraction in liq-uid slug,and unit length tend to decrease.The increase in outlet pressure leads to an increased hydrate formation rate,which not only increases the hydrate volumetric fraction along the pipe but also causes the upward shift of the hydrate phase transition critical point. 展开更多
关键词 vertical slug flow hydrate phase transition heat and mass transfer flow assurance multiphase flow modeling
在线阅读 下载PDF
Experimental and modeling investigation of zero net liquid flow in hilly terrain pipeline
7
作者 Bo Huang Qiang Xu +4 位作者 Ying-Jie Chang Ye-Qi Cao Hai-Yang Yu Yu-Wen Li Lie-Jin Guo 《Petroleum Science》 2025年第5期2183-2202,共20页
Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and acc... Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and accumulate to form slug flow, so it is necessary to remove the accumulated liquid by gas purging. In this paper, experiment is carried out in hilly terrain pipelines. Three flow patterns of stratified flow, slug flow and stratified entrained flow are observed. The process of gas purging accumulated liquid is divided into four stages, namely liquid accumulation, liquid rising, continuous outflow and tail outflow. At the same time, the flow pattern maps of each stage are drawn. The pressure drop signal is analyzed in time domain and frequency domain, and the contour map of pressure drop distribution is drawn. It is found that the ratio of range to average value can well distinguish the occurrence range of each flow pattern.Based on visualization, the transition process of slug flow to stratified flow and stratified entrained flow is studied, and the transition boundary prediction model is established. An image processing method is proposed to convert the image signal into a similarity curve, and PSD analysis is performed to calculate the slug frequency. The normal distribution is used to fit the slug frequency, and the predicted correlation is in good agreement with the experimental data. 展开更多
关键词 Hilly terrain pipeline Zero net liquid flow Slug flow flow pattern transition Quantitative image processing
原文传递
Novel two⁃stage preflow algorithm for solving the maximum flow problem in a network with circles
8
作者 DANG Yaoguo HUANG Jinxin +1 位作者 DING Xiaoyu WANG Junjie 《Journal of Southeast University(English Edition)》 2025年第1期91-100,共10页
The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that ... The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that at least one zero-flow arc must be present when the flow of the network reaches its maximum value.This result indicates that the maximum flow of the network will remain constant if a zero-flow arc within a circle is removed;therefore,the maximum flow of each network without circles can be calculated.The first stage involves identifying the zero-flow arc in the circle when the network flow reaches its maximum.The second stage aims to remove the zero-flow arc identified and modified in the first stage,thereby producing a new network without circles.The maximum flow of the original looped network can be obtained by solving the maximum flow of the newly generated acyclic network.Finally,an example is provided to demonstrate the validity and feasibility of this algorithm.This algorithm not only improves computational efficiency but also provides new perspectives and tools for solving similar network optimization problems. 展开更多
关键词 network with circles maximum flow zeroflow arc two-stage preflow algorithm
在线阅读 下载PDF
Particle transport in fractured geo-energy reservoirs considering the effect of fluid inertia and turbulent flow:A review 被引量:1
9
作者 E.A.A.V.Edirisinghe M.S.A.Perera +2 位作者 D.Elsworth S.K.Matthai E.Goudeli 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1906-1939,共34页
Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and... Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and gas extraction.Central to this phenomenon is the transport of proppants,tiny solid particles injected into the fractures to prevent them from closing once the injection is stopped.However,effective transport and deposition of proppant is critical in keeping fracture pathways open,especially in lowpermeability reservoirs.This review explores,then quantifies,the important role of fluid inertia and turbulent flows in governing proppant transport.While traditional models predominantly assume and then characterise flow as laminar,this may not accurately capture the complexities inherent in realworld hydraulic fracturing and proppant emplacement.Recent investigations highlight the paramount importance of fluid inertia,especially at the high Reynolds numbers typically associated with fracturing operations.Fluid inertia,often overlooked,introduces crucial forces that influence particle settling velocities,particle-particle interactions,and the eventual deposition of proppants within fractures.With their inherent eddies and transient and chaotic nature,turbulent flows introduce additional complexities to proppant transport,crucially altering proppant settling velocities and dispersion patterns.The following comprehensive survey of experimental,numerical,and analytical studies elucidates controls on the intricate dynamics of proppant transport under fluid inertia and turbulence-towards providing a holistic understanding of the current state-of-the-art,guiding future research directions,and optimising hydraulic fracturing practices. 展开更多
关键词 Two-phase flows Rock fractures Proppant transport Fluid inertia Turbulent flows Hydraulic fracturing
在线阅读 下载PDF
Numerical Study of Cavitating Flows around a Hydrofoil with Deep Analysis of Vorticity Effects 被引量:1
10
作者 Shande Li Wen’an Zhong +1 位作者 Shaoxing Yu Hao Wang 《Fluid Dynamics & Materials Processing》 2025年第1期179-204,共26页
This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with ... This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field. 展开更多
关键词 Cavitating flow HYDROFOIL flow velocity VORTICITY Computational Fluid Dynamics(CFD)
在线阅读 下载PDF
Boundary fluid constraints during electrochemical jet machining of large size emerging titanium alloy aerospace parts in gas–liquid flows:Experimental and numerical simulation 被引量:1
11
作者 Yang LIU Ningsong QU +1 位作者 Hansong LI Zhaoyang ZHANG 《Chinese Journal of Aeronautics》 2025年第1期115-130,共16页
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn... Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts. 展开更多
关键词 Electrochemical jet machining Titanium alloys Large size parts flow simulation Turbulent flow
原文传递
基于FLOW3D的V型河道滑坡涌浪首浪高度影响因素分析
12
作者 王环玲 冯业林 +2 位作者 粟焕 赵富刚 马行生 《三峡大学学报(自然科学版)》 北大核心 2025年第3期1-6,19,共7页
滑坡涌浪是影响山区水库安全运行的主要威胁之一,研究V型河道滑坡涌浪的首浪特征和影响因素对库区灾害防治有重要意义.本文使用FLOW3D计算流体力学方法对V型河道滑坡涌浪灾害进行了系统研究.建立了V型河道滑坡涌浪计算模型,考虑滑坡体... 滑坡涌浪是影响山区水库安全运行的主要威胁之一,研究V型河道滑坡涌浪的首浪特征和影响因素对库区灾害防治有重要意义.本文使用FLOW3D计算流体力学方法对V型河道滑坡涌浪灾害进行了系统研究.建立了V型河道滑坡涌浪计算模型,考虑滑坡体体积、滑速、河道水深、岸坡倾角、滑床摩擦系数等因素,进行了35组不同工况下的滑坡涌浪数值模拟,获取滑坡入水产生涌浪的过程和首浪高度.将数值模拟结果与经验公式进行了对比,分析不同因素对首浪高度的影响程度.结果表明,河道水深、滑床摩擦系数与首浪高度呈负相关,滑坡体积、入水速度、岸坡倾角与首浪高度呈正相关.各因素对首浪高度的影响程度关系为:入水速度>滑坡体积>岸坡倾角>河道水深>滑床摩擦系数.本文研究为山区水库滑坡涌浪灾害防治提供参考. 展开更多
关键词 滑坡涌浪 首浪高度 敏感性分析 V型河道 flow3D
在线阅读 下载PDF
Flow field distribution and overpressure characteristics inside the crew compartment of a truck-mounted howitzer under the effect of muzzle blast 被引量:1
13
作者 Shengcheng Wei Linfang Qian +2 位作者 Yadong Xu Qiang Yin Xinyu Xiong 《Defence Technology(防务技术)》 2025年第2期190-205,共16页
The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personn... The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personnel from firing artillery within the cab.To investigate the overpressure characteristics of the FFICC,a foreign trade equipment model was used as the research object,and a numerical model was established to analyze the propagation of muzzle blast from the muzzle to the interior of the crew compartment under extreme firing condition.For comparative verification,the muzzle blast experiment included overpressure data from both the flow field outside the crew compartment(FFOCC)and the FFICC,as well as the acceleration data of the crew compartment structure(Str-CC).The research findings demonstrate that the overpressure-time curves of the FFICC exhibit multi-peak characteristics,while the pressure wave shows no significant discontinuity.The enclosed nature of the cab hinders the dissipation of pressure wave energy within the FFICC,leading to sustained high-amplitude overpressure.The frameskin structure helps attenuate the impact of muzzle blast on the FFICC.Conversely,local high overpressure caused by the convex or concave features of the cab's exterior significantly amplifies the overpressure amplitude within the FFICC. 展开更多
关键词 Truck-mounted howitzer Muzzle blast flow field inside the crew compartment(FFICC) Overpressure characteristics flow-structure interaction
在线阅读 下载PDF
基于模糊GO-FLOW法的并网型微电网可靠性评估
14
作者 岳大为 姜毅 +3 位作者 杨明哲 李练兵 商悦阳 张帅龙 《太阳能学报》 北大核心 2025年第1期429-437,共9页
由于传统GO-FLOW法存在定常故障率和维修率的局限性,将一种新的可靠性评估算法—模糊GO-FLOW法引入并网型微电网可靠性评估中。首先,基于梯形模糊数,对GO-FLOW法进行改进;随后,根据并网型微电网系统结构,设计新型操作符并建立微电网系... 由于传统GO-FLOW法存在定常故障率和维修率的局限性,将一种新的可靠性评估算法—模糊GO-FLOW法引入并网型微电网可靠性评估中。首先,基于梯形模糊数,对GO-FLOW法进行改进;随后,根据并网型微电网系统结构,设计新型操作符并建立微电网系统的模糊GO-FLOW图,同时对操作符的模糊成功概率进行计算;最后,基于改进的IEEE RBTS BUS6 F4馈线系统,对比分析模糊GO-FLOW法、模糊化前GO-FLOW法和序贯蒙特卡洛模拟法。结果表明,在并网型微电网可靠性评估中,模糊GO-FLOW法具有较高的运算效率和计算精度。 展开更多
关键词 可靠性分析 微电网 光伏发电 GO-flow 梯形模糊数
原文传递
The well-posedness of incompressible impinging jet flow in an axisymmetric finitely long nozzle
15
作者 WANG Xin ZHANG Fan 《四川大学学报(自然科学版)》 北大核心 2025年第1期31-37,共7页
This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practi... This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practical engineering fields,such as in short take-off and vertical landing(STOVL)aircraft.Nowadays many intricate phenomena associated with impinging jet flows remain inadequately elucidated,which limits the ability to optimize aircraft design.Given a boundary condition in the inlet,the impinging jet problem is transformed into a Bernoulli-type free boundary problem according to the stream function.Then the variational method is used to study the corresponding variational problem with one parameter,thereby the wellposedness is established.The main conclusion is as follows.For a 3D axisymmetric finitely long nozzle and an infinitely long vertical wall,given an axial velocity in the inlet of nozzle,there exists a unique smooth incom‑pressible impinging jet flow such that the free boundary initiates smoothly at the endpoint of the nozzle and extends to infinity along the vertical wall at far fields.The key point is to investigate the regularity of the corner where the nozzle and the vertical axis intersect. 展开更多
关键词 Existence and uniqueness Impinging jet flow Incompressible flow Free boundary Axisym-metric finitely long nozzle
在线阅读 下载PDF
博物馆中的幸福感:基于flow理论的博物馆游客体验研究
16
作者 李璐 《沈阳文旅》 2025年第5期103-105,共3页
目前,博物馆的“活化”发展已成为我国博物馆发展的重要任务,活化发展的核心目标是丰富全社会历史文化滋养,其重要内涵之一就是“以人为本”。本文基于flow体验理论,关注博物馆游客体验,探讨flow理论对提升博物馆游客体验的价值和可行性... 目前,博物馆的“活化”发展已成为我国博物馆发展的重要任务,活化发展的核心目标是丰富全社会历史文化滋养,其重要内涵之一就是“以人为本”。本文基于flow体验理论,关注博物馆游客体验,探讨flow理论对提升博物馆游客体验的价值和可行性,并以理论指导博物馆的具体实践,针对成都博物馆、三星堆博物馆、成都武侯祠博物馆等典型案例进行分析,帮助游客在博物馆活动中获得更多的flow体验和幸福感,让博物馆“以人为本”的教育和服务功能真正发挥作用。 展开更多
关键词 活化发展 幸福感 博物馆游客体验 flow理论
在线阅读 下载PDF
Hydrodynamic Characteristics of an Underwater Manipulator in Pulsating Flow
17
作者 Xia Liu Derong Duan +2 位作者 Xiaoya Zhang Yujun Cheng Hui Zhang 《哈尔滨工程大学学报(英文版)》 2025年第3期503-517,共15页
Pulsating flow is a common condition for under water manipulators in Bohai Bay.This study aimed to investigate the effects of pulsation frequency and amplitude on the hydrodynamic characteristics of an underwater mani... Pulsating flow is a common condition for under water manipulators in Bohai Bay.This study aimed to investigate the effects of pulsation frequency and amplitude on the hydrodynamic characteristics of an underwater manipulator with different postures using the user-defined function (UDF) method. The lift coefficient (C_(L)), drag coefficient (C_(D)), and vortex shedding of the underwater manipulator in single-and dualarm forms were obtained. Results indicated that the maximum increase in the lift and drag coefficients subjected to the pulsation parameters was 24.45%and 28%, respectively, when the fluid flowed past a single arm. Compared with the single arm, the lift and drag coefficients of the arms were higher than those of the single arm when arm 2 was located upstream. Additionally, the pulsation frequency had no obvious effect on the manipulator, but the C_(L) and C_(D) of arm 2 showed an obvious increasing trend with an increase in pulsation amplitude. Meanwhile, when arm 2 was located downstream, the C_(L) and C_(D) of arm 2 were reduced by 16.38%and 1.15%, respectively, with an increase in the pulse frequency,and the maximum increase in the lift and dragcoefficients was 33.33%and 16.78%,respectively,with increasing pulsation amplitude.Moreover, the downstream wake morphology changed significantly, and a combined vortex phenomenon appeared. Finally, a theoretical basis for examining the hydrodynamic characteristics of marine engineering equipment was established to aid future marine resource exploitation. 展开更多
关键词 Underwater manipulator Pulsating flow Hydrodynamic performance Vortex shedding flow interference
在线阅读 下载PDF
Nonlinear flow control mechanism of two flexible flaps with fluid-structure interaction
18
作者 Jiakun Han Chao Dong +1 位作者 Jian Zhang Gang Chen 《Acta Mechanica Sinica》 2025年第2期116-131,共16页
The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlin... The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology. 展开更多
关键词 Nonlinear flow control Flexible flap Fluid-structure interaction flow separation IB-LB-FEM
原文传递
Review on internal flow mechanism and control methods of axial flow compressor at low Reynolds number
19
作者 Xuyang REN Xingen LU +6 位作者 Mingyang WANG Ge HAN Chengwu YANG Xu DONG Lipan YAO Yanfeng ZHANG Shengfeng ZHAO 《Chinese Journal of Aeronautics》 2025年第5期7-27,共21页
With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical... With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed. 展开更多
关键词 LowReynolds number Axial compressor flow mechanism flow control methods AEROENGINE
原文传递
Accurate and efficient elephant-flow classification based on co-trained models in evolved software-defined networks
20
作者 Ling Xia Liao Changqing Zhao +2 位作者 Jian Wang Roy Xiaorong Lai Steve Drew 《Digital Communications and Networks》 2025年第4期1090-1101,共12页
Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not ... Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not in a time-efficient manner.The time efficiency becomes even worse when the flows to be classified are sampled by flow entry timeout over Software-Defined Networks(SDNs)to achieve a better resource efficiency.This paper addresses this situation by combining co-training and Reinforcement Learning(RL)to enable a closed-loop classification approach that divides the entire classification process into episodes,each involving two elephant models.One predicts elephants and is retrained by a selection of flows automatically labeled online by the other.RL is used to formulate a reward function that estimates the values of the possible actions based on the current states of both models and further adjusts the ratio of flows to be labeled in each phase.Extensive evaluation based on real traffic traces shows that the proposed approach can stably predict elephants using the packets received in the first 10% of their lifetime with an accuracy of over 80%,and using only about 10% more control channel bandwidth than the baseline over the evolved SDNs. 展开更多
关键词 Software-defined network flow classification CO-TRAINING Reinforcement learning flow entry timeout
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部