Gene expression profile changes in brain regions following traumatic brain injury at the gene level cannot sufficiently elucidate gene expression time, expression amount, protein post-translational processing or modif...Gene expression profile changes in brain regions following traumatic brain injury at the gene level cannot sufficiently elucidate gene expression time, expression amount, protein post-translational processing or modification. Therefore, it is necessary to quantitatively analyze the gene expression profile using proteomic techniques. In the present study, we established a rat model of closed brain injury using Marmarou's weight-drop device, and investigated hippocampal differential protein expression using two-dimensional gel electrophoresis and surface-enhanced laser desorption ionization-time of flight-mass spectrometry. A total of 364 protein peaks were detected on weak cation exchange-2 protein chips, including 37 differential protein peaks. 345 protein peaks were detected on immobilized metal affinity capture arrays-Cu, including 12 differential protein peaks Further examination of these differential proteins revealed that glucose-regulated protein and proteasome subunit alpha type 3 expression were significantly upregulated post-injury. These results indicate that brain injury can alter protein expression in the hippocampus, and that glucose-regulated protein and proteasome subunit alpha type 3 are closely associated with the occurrence and development of traumatic brain injury.展开更多
局部遮阴条件下光伏阵列的功率-电压特性曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking, MPPT)技术无法准确追踪到全局最大功率点。针对该问题提出一种基于改进算术优化算法(improved arithmetic optimization alg...局部遮阴条件下光伏阵列的功率-电压特性曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking, MPPT)技术无法准确追踪到全局最大功率点。针对该问题提出一种基于改进算术优化算法(improved arithmetic optimization algorithm, IAOA)的MPPT控制方法。首先,采用Sobol序列生成均匀分布的初始种群,增加种群多样性。其次,为了平衡算术优化算法(arithmetic optimization algorithm, AOA)的全局搜索和局部开发能力,对AOA中数学优化器加速函数的权重进行重构。最后,在AOA的位置更新中引入Lévy飞行策略,并将准反向学习用于每次更新后的最佳解,增强了算法的收敛速度和跳出局部最优的能力。仿真和实验结果表明,将改进后的算法应用于MPPT控制中,能够在不同的局部遮阴及光照突变条件下准确、快速地跟踪到全局最大功率点,且功率振荡小。展开更多
基金the National Natural Science Foundation of China,No. 30471934
文摘Gene expression profile changes in brain regions following traumatic brain injury at the gene level cannot sufficiently elucidate gene expression time, expression amount, protein post-translational processing or modification. Therefore, it is necessary to quantitatively analyze the gene expression profile using proteomic techniques. In the present study, we established a rat model of closed brain injury using Marmarou's weight-drop device, and investigated hippocampal differential protein expression using two-dimensional gel electrophoresis and surface-enhanced laser desorption ionization-time of flight-mass spectrometry. A total of 364 protein peaks were detected on weak cation exchange-2 protein chips, including 37 differential protein peaks. 345 protein peaks were detected on immobilized metal affinity capture arrays-Cu, including 12 differential protein peaks Further examination of these differential proteins revealed that glucose-regulated protein and proteasome subunit alpha type 3 expression were significantly upregulated post-injury. These results indicate that brain injury can alter protein expression in the hippocampus, and that glucose-regulated protein and proteasome subunit alpha type 3 are closely associated with the occurrence and development of traumatic brain injury.