期刊文献+
共找到3,667篇文章
< 1 2 184 >
每页显示 20 50 100
Review on bio-inspired flight systems and bionic aerodynamics 被引量:16
1
作者 Jiakun HAN Zhe HUI +1 位作者 Fangbao TIAN Gang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期170-186,共17页
Humans’initial desire for flight stems from the imitation of flying creatures in nature.The excellent flight performance of flying animals will inevitably become a source of inspiration for researchers.Bio-inspired f... Humans’initial desire for flight stems from the imitation of flying creatures in nature.The excellent flight performance of flying animals will inevitably become a source of inspiration for researchers.Bio-inspired flight systems have become one of the most exciting disruptive aviation technologies.This review is focused on the recent progresses in bio-inspired flight systems and bionic aerodynamics.First,the development path of Biomimetic Air Vehicles(BAVs)for bio-inspired flight systems and the latest mimetic progress are summarized.The advances of the flight principles of several natural creatures are then introduced,from the perspective of bionic aerodynamics.Finally,several new challenges of bionic aerodynamics are proposed for the autonomy and intelligent development trend of the bio-inspired smart aircraft.This review will provide an important insight in designing new biomimetic air vehicles. 展开更多
关键词 Bio-inspired flight systems Biomimetic air vehicle Bionic aerodynamics Micro air vehicle
原文传递
Nonlinear direct data-driven control for UAV formation flight system 被引量:1
2
作者 WANG Jianhong Ricardo A.RAMIREZ-MENDOZA XU Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1409-1418,共10页
This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,cons... This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,consider one nonlinear closedloop system with a nonlinear plant and nonlinear feed-forward controller simultaneously.To avoid the complex identification process for that nonlinear plant,a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly,whose detailed explicit forms are model inverse method and approximated analysis method.Secondly,from the practical point of view,after reviewing the UAV formation flight system,nonlinear direct data-driven control is applied in designing the formation controller,so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem.Since most natural phenomena have nonlinear properties,the direct method must be the better one.Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems,and the direct nonlinear controller design is the purpose of this paper. 展开更多
关键词 nonlinear system nonlinear direct data-driven control model inverse control unmanned aerial vehicle(UAV)formation flight.
在线阅读 下载PDF
Modeling and software implementation of flight system for simulator of a new fighter
3
作者 SUICheng-cheng YANGYong-tian JIARong-zhen 《Journal of Marine Science and Application》 2004年第1期52-56,共5页
Real-time modeling and simulation of flight system are the key parts of simulator. After describing the architecture of simulator for a newer fighter, author presents the composition of flight system and its mathemati... Real-time modeling and simulation of flight system are the key parts of simulator. After describing the architecture of simulator for a newer fighter, author presents the composition of flight system and its mathematic models. In this paper, aircraft is regarded as an elastic flight body. And a new integrated algorithm which can remedy the shortcoming of Euler method and four-element method is used to calculate the Eulerian angles of aircraft. Finally, the software implementation of the flight system is given in the paper. 展开更多
关键词 flight simulator SIMULATION MODELING six-DOF mathematical model
在线阅读 下载PDF
Networked guaranteed cost PID attitude tracking control of a laboratory flight system
4
作者 Liu Yicai Liu Bin 《High Technology Letters》 EI CAS 2021年第3期310-319,共10页
This paper investigates the networked flight control system for a laboratory 3 degrees of freedom (3-DOF) helicopter,and presents a novel networked guaranteed cost proportion-integration-differentiation (PID) attitude... This paper investigates the networked flight control system for a laboratory 3 degrees of freedom (3-DOF) helicopter,and presents a novel networked guaranteed cost proportion-integration-differentiation (PID) attitude tracking control method with consideration of time-varying delay and packet dropouts.As the 3-DOF helicopter characteristics of multi-input multi-output (MIMO),channel coupling,and nonlinearity,a genera linear time delay system is modeled by analyzing the motions on elevation,pitch,and travel axis.By using the reciprocal convex approach,the free weight matrix,and the cone complementarity linearization (CCL) method,the PID tracking controller parameters can be designed if the related linear matrix inequalities (LMIs) are feasible.Finally,a practical experiment of laboratory 3-DOF helicopter is given,and the experimental results show that the proposed method is effective. 展开更多
关键词 time-varying delay packet dropout networked flight control system tracking control
在线阅读 下载PDF
Research on variable-speed scanning method for airborne area-array whiskbroom imaging system based on vertical flight path correction
5
作者 JIN Jia-Rong HAN Gui-Cheng +2 位作者 ANG Chong-Ru WU Ren-Fei WANG Yue-Ming 《红外与毫米波学报》 北大核心 2025年第4期511-519,共9页
Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,redu... Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency. 展开更多
关键词 airborne remote sensing whisk-broom imaging image motion vertical flight path correction(VFPC) line-of-sight(LOS)stabilization
在线阅读 下载PDF
Research on a safety-critical architecture of large commercial aircraft fly-by-wire flight control system
6
作者 TANG Zhishuai TANG Xianglong +2 位作者 JIN Ye CHENG Dansong LIU Xinghua 《Journal of Systems Engineering and Electronics》 2025年第5期1296-1305,共10页
In view of the deficiencies in aspects such as failure rate requirements and analysis assumptions of advisory circular,this paper investigates the sources of high safety requirements,and the top-down design method for... In view of the deficiencies in aspects such as failure rate requirements and analysis assumptions of advisory circular,this paper investigates the sources of high safety requirements,and the top-down design method for the flight control system life cycle.Correspondingly,measures are proposed,including enhancing the safety target value to 10^(−10)per flight hour and implementing development assurance.In view of the shortcomings of mainstream aircraft flight control systems,such as weak backup capability and complex fault reconfiguration logic,improvements have been made to the system’s operating modes,control channel allocation,and common mode failure mitigation schemes based on the existing flight control architecture.The flight control design trends and philosophies have been analyzed.A flight control system architecture scheme is proposed,which includes three operating modes and multi-level voters/monitors,three main control channels,and a backup system independent of the main control system,which has been confirmed through functional modeling simulations.The proposed method plays an important role in the architecture design of safety-critical flight control system. 展开更多
关键词 large aircraft fly-by-wire flight control system SAFETY common mode failure backup control
在线阅读 下载PDF
Research on Compliance Flight Test Technology of Integrated Modular Avionics(IMA)System
7
作者 Bo Xu 《Journal of Electronic Research and Application》 2025年第3期208-213,共6页
Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems... Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test. 展开更多
关键词 Integrated modular avionics flight test COMPLIANCE Abnormal probability
在线阅读 下载PDF
Modeling and Mode Switching Analysis of Electro-hydrostatic Actuators for Primary Flight Control System
8
作者 GUO Tuanhui FU Yongling CHEN Juan 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期25-36,共12页
With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling an... With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems. 展开更多
关键词 large aircraft flight control system electro-hydrostatic actuator(EHA) mode switching simulation analysis
在线阅读 下载PDF
Adaptive terminal sliding combined super twisting control design and flight tests for automatic carrier landing system
9
作者 Zhuoer YAO Daochun LI +1 位作者 Zi KAN Jinwu XIANG 《Chinese Journal of Aeronautics》 2025年第4期437-449,共13页
Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper ... Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise. 展开更多
关键词 Terminal sliding mode control Super twisting control Automatic carrier landing system Numerical methods Hardware-in-the-loop test flight test
原文传递
Transient state analysis of a rub-impact rotor system during maneuvering flight
10
作者 Jun WANG Yunfei LIU +2 位作者 Zhaoye QIN Liang MA Fulei CHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期236-251,共16页
Maneuvering flight substantially affects the dynamic behavior of rotors;particularly,such flight may cause rubbing between a rotor and stator,which is one of the most serious damages in aircraft engines.In this paper,... Maneuvering flight substantially affects the dynamic behavior of rotors;particularly,such flight may cause rubbing between a rotor and stator,which is one of the most serious damages in aircraft engines.In this paper,a nonlinear dynamic model for describing the dynamic characteristics of a rub-impact rotor system during maneuvering flight is established based on the Lagrange equations.Subsequently,numerical simulations employing the Newmark method are performed,delving into the detailed discussion of the influence of parameters such as rotational speed and maneuvering flight on the transient and steady-state responses of the rotor system.The effect mechanism of maneuver load and its coupling with rub impact is revealed.The results show that the impact response induced by maneuvering flight is more obvious in the subcritical state than in the supercritical state.The additional stiffness and damping are also induced;in particular,the additional damping has a coupling effect.Moreover,the rub impact imposes an additional constraint on the rotor system,thereby weakening the influence of the maneuver load and becoming the major factor that determines the dynamic behavior of the rotor system at high speeds. 展开更多
关键词 Maneuvering flight Rub impact Rotor system Dynamic response Impact response
原文传递
Robust fixed-time flight controller for a dual-system convertible UAV in the cruise mode
11
作者 Lulu Chen Zhenbao Liu +2 位作者 Qingqing Dang Wen Zhao Wenyu Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期53-66,共14页
This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind di... This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results. 展开更多
关键词 Convertible UAV flight control Disturbance observer Fixed-time control
在线阅读 下载PDF
Safe flight corridor constrained sequential convex programming for efficient trajectory generation of fixed-wing UAVs 被引量:2
12
作者 Jing SUN Guangtong XU +2 位作者 Zhu WANG Teng LONG Jingliang SUN 《Chinese Journal of Aeronautics》 2025年第1期537-550,共14页
Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequent... Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time. 展开更多
关键词 Fixed-wing unmanned aerial vehicle Efficient trajectory planning Safe flight corridor Sequential convex programming Customized convex optimizer
原文传递
Dynamic Characterization of Helicopter Main Reducer Planetary Drive System under Several Typical Flight Conditions
13
作者 Lin Yang Fengqiang Qian +1 位作者 Xiangyan Meng Wenjin Zhou 《Advances in Aerospace Science and Technology》 2024年第4期167-177,共11页
The transmission system is a critical power component of helicopters, playing an indispensable role in power transmission. Among its key elements, the planetary gear system is an essential part of the helicopter trans... The transmission system is a critical power component of helicopters, playing an indispensable role in power transmission. Among its key elements, the planetary gear system is an essential part of the helicopter transmission architecture. Establishing a dynamic model of the helicopter transmission system and analyzing the dynamic response of the planetary gear system under varying flight conditions are crucial for enhancing the system’s performance and safety. In this study, the transmission system is modeled comprehensively using the lumped mass method and the finite element method, and the dynamic characteristics of the planetary gear system, as reflected on the main gearbox casing under different flight scenarios, are examined. The findings reveal that the resonance frequencies of the planetary gear system remain consistent across various flight conditions, indicating that these frequencies are governed by the inherent structural and dynamic properties of the system. However, the vibration amplitudes at resonance points differ depending on the flight condition. Specifically, the resonance amplitudes at 0.057 kHz and 0.093 kHz during Hovering are significantly lower than those in other conditions, demonstrating that operational scenarios directly influence vibration response. 展开更多
关键词 HELICOPTER Transmission system Dynamic Modeling Planetary Drive system flight Condition
在线阅读 下载PDF
Solar Cells’ Characteristics of Unmanned Aerial Vehicle Under the Coupling Influence of Flight and Environmental Factors
14
作者 Wenbo Xiao Shan Ouyang Yongbo Li 《Journal of Beijing Institute of Technology》 2025年第3期327-336,共10页
This paper investigates the power generation characteristics of solar cells mounted on unmanned aerial vehicles(UAVs)under the coupled influence of flight conditions and the sur-rounding environment.Firstly,the study ... This paper investigates the power generation characteristics of solar cells mounted on unmanned aerial vehicles(UAVs)under the coupled influence of flight conditions and the sur-rounding environment.Firstly,the study reveals that the voltage,current,and power output of the solar cells undergo consistent temporal variations throughout the day,primarily driven by voltage fluctuations,with a peak occurring around noon.Secondly,it is observed that the cells’performance is significantly more influenced by temporal variations in external light intensity than by temperature changes resulting from variations in flight speed.Finally,the study finds that the impact of flight altitude on the cells’performance is slightly more pronounced than the influence of temporal variations in external light intensity. 展开更多
关键词 unmanned aerial vehicle(UAV) solar cell PERFORMANCE flight altitude flight speed
在线阅读 下载PDF
Multi-objective optimization of top-level arrangement for flight test
15
作者 WANG Yunong BI Wenhao +2 位作者 FAN Qiucen XU Shuangfei ZHANG An 《Journal of Systems Engineering and Electronics》 2025年第3期714-724,共11页
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig... The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test. 展开更多
关键词 flight test top-level arrangement flight test optimization multi-objective optimization
在线阅读 下载PDF
Advancing operation safety and efficiency by innovative flight trajectory prediction
16
作者 Zhijie CHEN 《Chinese Journal of Aeronautics》 2025年第7期285-287,共3页
1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c... 1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO). 展开更多
关键词 flight trajectory prediction air traffic control air traffic control atc future trajec flight trajectory prediction ftp airspace complexity conflict detection air transportation
原文传递
An adhesive drone trap to study the flight altitude preferences of winged ants
17
作者 Daniele Giannetti Enrico Schifani Donato A.Grasso 《Current Zoology》 2025年第5期674-677,共4页
The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeogr... The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018). 展开更多
关键词 flight ALTITUDE winged ants PREFERENCES biogeographic studies wagner ADHESIVE TRAP
原文传递
Impacts of UAV–LiDAR flight altitude and forest canopy on the estimation accuracy of understory terrain
18
作者 HU Zhongyang WANG Lun +2 位作者 CHEN Xiangyu YU Kunyong LIU Jian 《Journal of Mountain Science》 2025年第7期2485-2496,共12页
Unmanned aerial vehicle light detection and ranging(UAV–LiDAR)is a new method for collecting understory terrain data.The high estimation accuracy of understory terrain is crucial for accurate tree height measurement ... Unmanned aerial vehicle light detection and ranging(UAV–LiDAR)is a new method for collecting understory terrain data.The high estimation accuracy of understory terrain is crucial for accurate tree height measurement and forest resource surveys.The UAV–LiDAR flight altitude and forest canopy cover significantly impact the accuracy of understory terrain estimation.However,since no research examined their combined effects,we aimed to investigate this relationship.This will help optimize UAV–LiDAR flight parameters for understory terrain estimation and forest surveys across various canopy cover.This study analyzed the impacts of three flight altitudes and three canopy cover on the estimation accuracy of understory terrain.The results showed that when canopy cover exceeded a specific value,UAV–LiDAR flight altitudes significantly affected understory terrain estimation.Given a forest canopy cover,the reduction in ground point coverage increased significantly as the flight altitude increased;given a flight altitude,the higher the canopy cover,the more significant the reduction in ground point coverage.In forests with a canopy cover≥0.9,there were substantial differences in the accuracies of understory digital elevation models(DEMs)generated using UAV–LiDAR at different flight altitudes.For forests with a canopy cover<0.9,the mean absolute error(MAE)of understory DEMs from UAV–LiDAR at different flight altitudes was≤0.17 m and the root mean square error(RMSE)was≤0.24 m.However,for forests with a canopy cover≥0.9,the UAV–LiDAR flight altitude significantly affected the accuracy of understory DEMs.At the same flight altitude,the MAE and RMSE of the estimated elevation for forests with a canopy cover≥0.9 were approximately twice those of the estimated elevation for forests with a canopy cover<0.9.In forests with low canopy cover,it is possible to improve data collection efficiency by selecting a higher flight altitude.However,UAV–LiDAR flight altitudes significantly affected understory terrain estimation in forests with high canopy cover,it is essential to adopt terrain-following flight modes,reduce flight altitudes,and maintain a consistent flight altitude during longterm monitoring in high canopy cover forests. 展开更多
关键词 UAV-LiDAR flight altitude Understory terrain estimation Forest canopy cover DEM
原文传递
Experimental investigation and life prediction for the load spectrum with flight mission characteristics on a P/M superalloy
19
作者 Renjie JIANG Xiaoguang YANG +2 位作者 Muwei CHENG Jia HUANG Duoqi SHI 《Chinese Journal of Aeronautics》 2025年第3期403-412,共10页
The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading ar... The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading are superimposed on Type Ⅰ cyclic loading. Meanwhile, the sequence of the Type Ⅲ/Ⅳ cyclic and creep loading varies with mission. This work performed load spectrum test with this characteristic on the Ni-based alloy FGH96. Then a life prediction method was developed based on the Chaboche fatigue damage accumulation model and a modified time fraction model. Creep followed by Fatigue (C-F) test was carried out to reveal the creep-fatigue interaction and calibrate parameters. The results show that most test results fall within the 2-fold deviation band. The sequence of creep-fatigue loading within the load spectrum exhibited a limited effect on life. Finally, simplified methods were developed to improve analysis efficiency, and cases where simplified methods could replace the proposed method were discussed. 展开更多
关键词 Load spectrum Life prediction flight mission Loading sequence Niclel alloys
原文传递
Exploring the potential carbon emissions and net-zero path of international flights:A case study in Macao
20
作者 Haoxuan Wang Ni Sheng +2 位作者 Qingbin Song Liujie Xu Jing Bai 《Journal of Environmental Sciences》 2025年第10期288-299,共12页
With the rapid development of aviation industry and its increasing impact on the global climate change,the contributions of carbon emissions frominternational flights are attracting more and more attention worldwide.T... With the rapid development of aviation industry and its increasing impact on the global climate change,the contributions of carbon emissions frominternational flights are attracting more and more attention worldwide.This study,taking Macao as the aviation hub,established the cross-border aviation carbon emission evaluation model to explore dynamic carbon emissions and net-zero path of international flights.The aviation hubmainly covers 58 routes and five types of civil aircraft from 12 countries or regions during 2000-2022.The results show that the aviation transportation in Macao emitted about 1.44 million tons CO_(2)eq in 2019,which is high 3.6 times that of 2000.The COVID-19 has led to a rapid decline in aviation carbon emissions in a short period of time,carbon emissions in 2020 decreased by 80%compared to 2019.In terms of cumulative carbon emissions from 2000 to 2019,the A321 and A320 Airbus contribute to 80%of carbon emissions.And the Chinese mainland(37%)and Taiwan(29%)are the main sources of emissions.In 2000-2019,the proportion of carbon emissions from China(including Taiwan and Hong Kong)decrease from 91%to 53%,while the contribution from Southeast Asia(from 5% to 26%),Japan and South Korea(from 2% to 19%)keep the growth trends.In the optimal scenario(B3C3),net zero emissions of cross-border aviation in Macao can be not achieved,and there is still only by removing 0.3 million tons CO_(2)eq.Emission reduction technology and new energy usage are priorities for the aviation emission reduction. 展开更多
关键词 International flight Cross-border aviation Carbon emissions Scenario analysis Covid-19 Net-zero emissions
原文传递
上一页 1 2 184 下一页 到第
使用帮助 返回顶部