Abstract A closed-loop fault detection problem is investigated for the full-envelope flight vehicle with measurement delays, where the flight dynamics are modeled as a switched system with delayed feedback signals. Th...Abstract A closed-loop fault detection problem is investigated for the full-envelope flight vehicle with measurement delays, where the flight dynamics are modeled as a switched system with delayed feedback signals. The mode-dependent observer-based fault detection filters and state estimation feedback controllers are derived by considering the delays' impact on the control system and fault detection system simultaneously. Then, considering updating lags of the controllers/filters' switching signals which are introduced by the delayed measurement of altitude and Mach number, an asynchronous H analysis method is proposed and the system model is further augmented to be an asynchronously switched time-delay system. Also, the global stability and desired performance of the augmented system are guaranteed by combining the switched delay-dependent Lyapunov Krasovskii functional method with the average dwell time method (ADT), and the delaydependent existing conditions for the controllers and fault detection filters are obtained in the form of the linear matrix inequalities (LMIs), Finally, numerical example based on the hypersonic vehicles and highly maneuverable technology (HiMAT) vehicle is given to demonstrate the merits of the proposed method.展开更多
As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportional...As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator.展开更多
Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to comple...Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability.A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provide mathematical descriptions of different kinds of maneuvers. A comprehensive control solver based on the optimal linear quadratic regulator theory is developed to calculate the pilot controls of different maneuvers. The coupling problem between pilot controls and flight control system outputs is well solved by taking the flight control system model into the control solver. Inverse simulation of three different kinds of maneuvers with different agility requirements defined in the ADS-33 E-PRF is implemented based on the developed method for a UH-60 helicopter. The results show that the method developed in this paper can solve the closed-loop inverse simulation problem of helicopter maneuver flight with high reliability as well as efficiency.展开更多
A model-flee compound controller design method is proposed to achieve the wide frequency bandwidth requirement of flight simulators. The method based on quantitative feedback theory, acquires system uncertainty under ...A model-flee compound controller design method is proposed to achieve the wide frequency bandwidth requirement of flight simulators. The method based on quantitative feedback theory, acquires system uncertainty under different working conditions through closed-loop identification with power spectrum estimation. Then in controller designing, it makes a trade, off between the strict requirements for magnitude-frequency characteristics and those for phase-frequency characteristics of flight simulators, by converting the indices of magnitude-frequency characteristics of flight simulators into quantitative feedback theory-based tracking specification bounds and using feedforward controller to attain the required phase-flequency characteristics. Simulation and experimental results indicate that, when used to design inner flame controller of flight simulator, the proposed method can fulfill the requirements for wide frequency bandwidth indices. Compared with other controller design methods, it has the property of model-free and transparency.展开更多
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increme...A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61074027,61273083)
文摘Abstract A closed-loop fault detection problem is investigated for the full-envelope flight vehicle with measurement delays, where the flight dynamics are modeled as a switched system with delayed feedback signals. The mode-dependent observer-based fault detection filters and state estimation feedback controllers are derived by considering the delays' impact on the control system and fault detection system simultaneously. Then, considering updating lags of the controllers/filters' switching signals which are introduced by the delayed measurement of altitude and Mach number, an asynchronous H analysis method is proposed and the system model is further augmented to be an asynchronously switched time-delay system. Also, the global stability and desired performance of the augmented system are guaranteed by combining the switched delay-dependent Lyapunov Krasovskii functional method with the average dwell time method (ADT), and the delaydependent existing conditions for the controllers and fault detection filters are obtained in the form of the linear matrix inequalities (LMIs), Finally, numerical example based on the hypersonic vehicles and highly maneuverable technology (HiMAT) vehicle is given to demonstrate the merits of the proposed method.
基金the National Natural Science Foundation of China (60604009)Aeronautical Science Foundationof China(2006ZC51039)Beijing NOVA Program (2007A017).
文摘As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator.
基金co-supported by the National Natural Science Foundation of China (No. 61503183)the Aeronautical Science Foundation of China (No. 2015ZA52002)
文摘Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability.A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provide mathematical descriptions of different kinds of maneuvers. A comprehensive control solver based on the optimal linear quadratic regulator theory is developed to calculate the pilot controls of different maneuvers. The coupling problem between pilot controls and flight control system outputs is well solved by taking the flight control system model into the control solver. Inverse simulation of three different kinds of maneuvers with different agility requirements defined in the ADS-33 E-PRF is implemented based on the developed method for a UH-60 helicopter. The results show that the method developed in this paper can solve the closed-loop inverse simulation problem of helicopter maneuver flight with high reliability as well as efficiency.
文摘A model-flee compound controller design method is proposed to achieve the wide frequency bandwidth requirement of flight simulators. The method based on quantitative feedback theory, acquires system uncertainty under different working conditions through closed-loop identification with power spectrum estimation. Then in controller designing, it makes a trade, off between the strict requirements for magnitude-frequency characteristics and those for phase-frequency characteristics of flight simulators, by converting the indices of magnitude-frequency characteristics of flight simulators into quantitative feedback theory-based tracking specification bounds and using feedforward controller to attain the required phase-flequency characteristics. Simulation and experimental results indicate that, when used to design inner flame controller of flight simulator, the proposed method can fulfill the requirements for wide frequency bandwidth indices. Compared with other controller design methods, it has the property of model-free and transparency.
基金Program for New Century Excellent Talents in University (NCET-10-0032)
文摘A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.