期刊文献+
共找到436篇文章
< 1 2 22 >
每页显示 20 50 100
Progressive fatigue damage modelling and life prediction of 3D four-directional braided composite I-beam under four-point flexure spectrum loading
1
作者 Dong LI Junjiang XIONG 《Chinese Journal of Aeronautics》 2025年第3期65-84,共20页
This paper aims to experimentally and numerically probe fatigue behaviours and lifetimes of 3D4D(three-dimensional four-directional)braided composite I-beam under four-point flexure spectrum loading.New fatigue damage... This paper aims to experimentally and numerically probe fatigue behaviours and lifetimes of 3D4D(three-dimensional four-directional)braided composite I-beam under four-point flexure spectrum loading.New fatigue damage models of fibre yarn,matrix and fibre–matrix interface are proposed,and fatigue failure criteria and PFDA(Progressive Fatigue Damage Algorithm)are thus presented for meso-scale fatigue damage modelling of 3D4D braided composite I-beam.To validate the aforementioned model and algorithm,fatigue tests are conducted on the 3D4D braided composite I-beam under four-point flexure spectrum loading,and fatigue failure mechanisms are analyzed and discussed.Novel global–local FE(Finite Element)model based on the PFDA is generated for modelling progressive fatigue failure process and predicting fatigue life of 3D4D braided composite I-beam under four-point flexure spectrum loading.Good agreement has been achieved between experimental results and predictions,demonstrating the effective usage of new model.It is shown that matrix cracking and interfacial debonding initially initiates on top surface of top flange of I-beam,and then gradually propagates from the side surface of top flange to the intermediate web along the braiding angle,and considerable fiber breakage finally causes final fatigue failure of I-beam. 展开更多
关键词 Three-dimensional four-directional Braided composite I-BEAM Four-point flexure Fatigue life prediction Progressive fatigue damage Fatigue damage Finite element method
原文传递
An Improved Bionic Piezoelectric Actuator for Eliminating the Backward Motion
2
作者 Nen Wan Junjie Cai +7 位作者 Lidong He Jianping Li Yili Hu Jijie Ma Kang Chen Yingting Wang Yigang Shen Jianming Wen 《Journal of Bionic Engineering》 2025年第2期703-712,共10页
Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency... Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability. 展开更多
关键词 PIEZOELECTRIC ACTUATOR SEAL BIONIC flexure Backward motion
在线阅读 下载PDF
Comparison of different anastomosis methods in laparoscopically assisted left hemicolectomy for colon cancer
3
作者 Fan Li Yi-Lin Xie +5 位作者 Dong Xu Chuan-Hui Lu Jun-Wei Wu Jin-Xue Ma Guo-Xian Guan Hai-Xing Wang 《World Journal of Gastrointestinal Endoscopy》 2025年第11期102-111,共10页
BACKGROUND Left colon cancer surgery relies on laparoscopic hemicolectomy,with digestive tract reconstruction critical.End-to-side anastomosis(ESA)and side-to-side anastomosis(SSA)anastomoses are common,but their comp... BACKGROUND Left colon cancer surgery relies on laparoscopic hemicolectomy,with digestive tract reconstruction critical.End-to-side anastomosis(ESA)and side-to-side anastomosis(SSA)anastomoses are common,but their comparative outcomes,especially in splenic flexure handling and efficacy,need clarification.This study compares ESA and SSA to guide surgical practice.AIM To compare the clinical outcomes of laparoscopically assisted left hemicolectomy with ESA and SSA.METHODS A total of 334 patients were included,with 105 patients from the First Affiliated Hospital of Xiamen University and 229 patients from the First Affiliated Hospital of Fujian Medical University,between January 1,2012,and May 31,2020.The patients were divided into two groups:146 cases in the ESA group and 188 cases in the SSA group.Clinical data from both groups were compared,and the survival prognosis was followed up.RESULTS The operation time for the ESA group was significantly shorter than that of the SSA group(197.1±57.7 minutes vs 218.6±67.5 minutes,χ2=4.298,P=0.039).There were no significant differences between the two groups in intraoperative blood loss,postoperative pain score at 48 hours,time to first bowel movement,number of lymph nodes dissected,or postoperative complications such as anastomotic leakage,bleeding,stenosis.and adhesive intestinal obstruction at 6 months,12 months,and 24 months(P>0.05).Specifically,the incidence of complications like anastomotic leakage was 2.1%in the ESA group vs 4.3%in the SSA group(P=0.264).The 5-year disease-free survival(DFS)rate was 66.4%for the ESA group and 63.9%for the SSA group(P=0.693).There were no significant differences in the overall survival rate between the two groups.The incidence of splenic laceration was significantly higher in the SSA group(3.7%vs 0.7%,P=0.018).Overall,the 5-year DFS was 66.4%for ESA and 63.9%for SSA,with no significant difference in survival between the groups(P=0.693).CONCLUSION Both laparoscopically assisted left hemicolectomy with ESA and SSA are feasible and offer comparable long-term outcomes.ESA may reduce the need for splenic flexure dissociation,particularly when the tumor is located at the descending colon or its junction with the sigmoid colon,and especially in obese patients,elderly individuals with multiple complications,or those with severe adhesions in the splenic flexure of the surgical field. 展开更多
关键词 Left colon cancer LAPAROSCOPE End-to-side Side-to-side Anostomosis Splenic flexure dissociation
暂未订购
Bandgap characteristics analysis and graded design of a novel metamaterial for flexural wave suppression
4
作者 Fan YANG Zhaoyang MA Xingming GUO 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期1-24,共24页
A novel elastic metamaterial is proposed with the aim of achieving lowfrequency broad bandgaps and bandgap regulation.The band structure of the proposed metamaterial is calculated based on the Floquet-Bloch theorem,an... A novel elastic metamaterial is proposed with the aim of achieving lowfrequency broad bandgaps and bandgap regulation.The band structure of the proposed metamaterial is calculated based on the Floquet-Bloch theorem,and the boundary modes of each bandgap are analyzed to understand the effects of each component of the unit cell on the bandgap formation.It is found that the metamaterials with a low elastic modulus of ligaments can generate flexural wave bandgaps below 300 Hz.Multi-frequency vibrations can be suppressed through the selective manipulation of bandgaps.The dual-graded design of metamaterials that can significantly improve the bandgap width is proposed based on parametric studies.A new way that can regulate the bandgap is revealed by studying the graded elastic modulus in the substrate.The results demonstrate that the nonlinear gradient of the elastic modulus in the substrate offers better bandgap performance.Based on these analyses,the proposed elastic metamaterials can pave the way for multi-frequency vibration control,low-frequency bandgap broadening,and bandgap tuning. 展开更多
关键词 METAMATERIAL flexural wave bandgap local resonance graded design
在线阅读 下载PDF
Generation of acoustical Bessel-like collimated beams using ring-excited flat plate structure transducers
5
作者 Ming-Liang Han Ruo-Yu Tang +2 位作者 Ning Ma Guang-Bin Zhang Xiao-Feng Zhang 《Chinese Physics B》 2025年第4期377-385,共9页
This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating tra... This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating transducer in a ring excitation manner.The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis,numerical simulation and experimental methods.The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries.The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate.As the excitation radius increases,the main lobe width of the resulting Bessel-like collimated beam decreases,the extent of the focusing region increases,and the amplitude of the side lobes initially increases and then decreases.Based on the simulation results,a prototype Bessel-like collimated beam generation system is made and measured experimentally.The experimental results are in good agreement with the numerical results.The Bessel-like collimated beam can be generated by the proposed system,which has potential application in the fields of long-range detection,imaging of highly attenuated materials,and airflow acceleration. 展开更多
关键词 Bessel-like collimated beams flat plate structure transducers flexural vibration ring-excited
原文传递
Effect of Thermo-Oxidative Aging on Flexural Behavior of Quasi-Isotropic Carbon Fiber Reinforced Composite Laminates
6
作者 SHAKYA Priyanka GU Bohong 《Journal of Donghua University(English Edition)》 2025年第3期259-272,共14页
With an increased utilization of carbon fiber reinforced polymers(CFRPs)in high temperature environments,investigating their effects on materials becomes exceedingly important.This study presents a comparative investi... With an increased utilization of carbon fiber reinforced polymers(CFRPs)in high temperature environments,investigating their effects on materials becomes exceedingly important.This study presents a comparative investigation of thermo-oxidative aging effects on the flexural performance of two carbon fiber reinforced composite laminates(CFRCLs):a quasi-isotropic plain-woven CFRCL and a quasi-isotropic unidirectional layup CFRCL(designated as PW-CFRCL and UD-CFRCL,respectively).The CFRCLs were subjected to thermo-oxidative aging for specific durations,and their flexural strength was evaluated through three-point bending tests.The flexural strength of the laminates decreased with the prolonged aging duration.Despite having lower fiber content,PW-CFRCLs showed higher flexural strength than UD-CFRCLs.After eight days of aging,the flexural strength of PW-CFRCLs decreased by merely 4%-5%,while that of UD-CFRCLs decreased by 11%-14%.After 32 days of aging,the thinner PW-CFRCL with the lowest fiber content exhibited the highest flexural strength(595.52 MPa),followed by the thinner UD-CFRCL(549.83 MPa),then the thicker PW-CFRCL(445.29 MPa)and finally,the thicker UD-CFRCL(393.90 MPa).The decline in flexural properties of the laminates was primarily attributed to matrix cracking and interface debonding resulting from matrix oxidation.To validate the universality of this result,the finite element method was employed,showing a good correlation with the experimental findings. 展开更多
关键词 flexural strength thermo-oxidative aging matrix oxidation interface debonding finite element method
在线阅读 下载PDF
Experimental Study on the Compressive and Flexural Properties of the Ultrahigh-Performance Concrete Containing Fibers
7
作者 Mohammad Yousef Nejati Manuchehr Behruyan +2 位作者 Amirreza Sadeghi Kourosh Mehdizadeh Abbasali Sadeghi 《Journal of Building Material Science》 2025年第1期83-96,共14页
Ultrahigh-performance concrete(UHPC)is a groundbreaking kind of concrete that distinguishes itself from conventional concrete through its unique material properties.Understanding and managing the time-dependent charac... Ultrahigh-performance concrete(UHPC)is a groundbreaking kind of concrete that distinguishes itself from conventional concrete through its unique material properties.Understanding and managing the time-dependent characteristics of these materials is essential for their effective use in various construction applications.This study presents an experimental evaluation of the compressive and bending properties of the UHPC incorporating polypropylene,steel,and glass fibers.Based on ACI-211 guidelines,the UHPC mix was designed by using three types of aggregates:limestone,andesite,and quartzite,along with 5%fiber content(at varying percentages of 0,5%,10%,15%,and 20%)relative to the cementitious materials,and three different water-to-cement(w/c)ratios(0.24,0.3,and 0.4)were used.In this research,the compressive and flexural strength tests were conducted.The results show that increasing the values of the fibers significantly enhances the compressive strength of the studied samples.Furthermore,the utilization of fibers markedly improves the bending strength of the samples,demonstrating a strong correlation with the yield resistance of the material.Also,findings show that using steel fibers increases the compressive and bending strength of the tested samples more than polypropylene and glass fibers.For instance,in UHPC samples with 0.4 w/c,the average compressive strength values are 82.2 MPa,70.3 MPa,and 67.1 MPa for steel,polypropylene,and glass fibers,respectively.Also,in the flexural strength test,the modulus of rupture is obtained as an average of 6.24 MPa,5.24 MPa and 4.83 MPa for UHPC samples with steel,polypropylene and glass fibers,respectively. 展开更多
关键词 Experimental Study Ultrahigh-Performance Concrete(UHPC) Polypropylene Fiber Steel Fiber Glass Fiber Compressive Strength Flexural Strength
在线阅读 下载PDF
Preparation of Porous Alumina Ceramics by Sacrificial Template Method
8
作者 ZHU Tianli WANG Kexiu +1 位作者 WANG Youfa ZHENG Bowen 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1213-1222,共10页
Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance po... Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance porous alumina ceramics were obtained.The properties of the porous alumina ceramics were analyzed by means of SEM,XRD,flexural strength and porosity.The research findings showed that,when the starch content was 1 wt%,the prepared ceramic mainly consisted of four phases:α-Al_(2)O_(3),MgAl_(2)O_(4),ZrO,and YSZ.The flexural strength reached 157.27 MPa,the flexural strength of the green body was about 3 MPa,and the porosity was around 30%. 展开更多
关键词 sacrificial template porous alumina ceramics flexural strength
原文传递
Impact and Residual Flexural Properties of 3D Integrated Woven Spacer Composites
9
作者 Mahim Masfikun Hannan Deng’an Cai Xinwei Wang 《Journal of Polymer Materials》 2025年第3期873-891,共19页
This study investigates the low-velocity impact and post-impact flexural properties of 3D integrated woven spacer composites,focusing on their orthotropic behavior when tested along two principal directions,i.e.,warp(... This study investigates the low-velocity impact and post-impact flexural properties of 3D integrated woven spacer composites,focusing on their orthotropic behavior when tested along two principal directions,i.e.,warp(X-type)and weft(Y-type)directions.The same composite material was tested in these orientations to evaluate the differences in impact resistance and residual bending strength.Specimens were fabricated via vacuum-assisted molding and tested at 2,3,5,and 7 J impact energies using an Instron Ceast 9350 drop-weight impact testing machine,in accordance with ASTM D7136.Post-impact flexural tests were performed using a four-point bending method in accordance with ASTM D7264.The absorbed energy increased from 1.97 to 6.98 J,and the panel damage area ranged from 121 to 361 mm^(2) as impact energy roses.Specimens tested in the weft direction(Y-type)showed greater residual strength(up to 15.83 N)and displacement(up to 0.538 mm)than those tested in the warp direction(X-type).Ultrasonic C-scan imaging revealed localized matrix cracking and fiber failure damage patterns.Results emphasize the directional differences in impact resistance and residual bending properties,highlighting the importance of material orientation in structural applications.This study provides a foundation for utilizing 3D woven spacer composites in lightweight,damage-tolerant structural components. 展开更多
关键词 3D integrated woven spacer composites low-velocity impact post-impact flexural properties impact resistance
在线阅读 下载PDF
新型硬盘磁头折片组合Flexure设计
10
作者 周晶 江新 徐东建 《现代制造技术与装备》 2012年第1期15-16,共2页
针对大容量、高速硬盘的需要,提出了一种低特性阻抗,低功耗,高带宽的新型硬盘磁头折片组合Flexure的设计,重点说明了该Flexure的结构、工作原理及其主要技术特性。并结合流行电磁仿真软件ADS对其电磁性能进行了设计,仿真及验证。
关键词 硬盘 flexure设计 TDR仿真
在线阅读 下载PDF
Mechanically robust high magnetic performance Sm_(2)Co_(17)sintered magnets via microstructure modification with Al_(2)O_(3)doping
11
作者 Lei Wang Qiangfeng Li +8 位作者 Chao Wang Meng Zheng Ze Duan Yifei Bi Youhao Liu Minggang Zhu Yikun Fang Xiaofei Yi Wei Li 《Journal of Materials Science & Technology》 2025年第9期148-157,共10页
In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage... In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage of Al_(2)O_(3)doping is enough to enhance the flexural strength by about 20%(∼180 MPa for the case of the c-axis parallel to height).Meanwhile,the(BH)max remains around 219 kJ/m^(3),and Hcj is 2052 kA/m,which is over 95%of that of the original magnets without doping.The promising improvement in flexural strength is mainly attributed to the grain size effective refinement caused by Sm_(2)O_(3)particles including newly-formed ones from the reaction of the Al_(2)O_(3)powder and Sm in the matrix.Furthermore,the grain size of the magnets decreases significantly with increasing of Al_(2)O_(3)doping up to 0.3 wt%.Espe-cially,the grain size of 0.3 wt%Al_(2)O_(3)doped magnets is refined by 37%.However,the flexural strengths(for the c-axis parallel to height and the c-axis parallel to width cases)of the magnets decrease sequen-tially and are even lower than that of the original magnet.The microstructure investigations indicate that the decrease in flexural strength may closely be correlated to the larger cell size and the incomplete cell boundaries phase.The obtained results infer that the flexural strength is susceptible to not only grain size but also the cellular structure of the magnets. 展开更多
关键词 Sm_(2)Co_(17)-type permanent magnets Al_(2)O_(3)powder Grain refinement Microstructure Flexural strength
原文传递
Topological and Shape Optimization of Flexure Hinges for Designing Compliant Mechanisms Using the Level Set Method 被引量:8
12
作者 Benliang Zhu Xianmin Zhang +2 位作者 Min Liu Qi Chen Hai Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期42-53,共12页
A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hin... A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hinges with di erent configurations have been successively proposed, they are often designed based on designers' experiences and inspirations. This study presents a systematic method for topological optimization of flexure hinges by using the level set method. Optimization formulations are developed by considering the functional requirements and geometrical constraints of flexure hinges. The functional requirements are first constructed by maximizing the compliance in the desired direction while minimizing the compliances in the other directions. The weighting sum method is used to construct an objective function in which a self-adjust method is used to set the weighting factors. A constraint on the symmetry of the obtained configuration is developed. Several numerical examples are presented to demonstrate the validity of the proposed method. The obtained results reveal that the design of a flexure hinge starting from the topology level can yield more choices for compliant mechanism design and obtain better designs that achieve higher performance. 展开更多
关键词 TOPOLOGY optimization Compliant mechanisms flexure HINGES Level SET METHOD
在线阅读 下载PDF
Optimizing the Qusai-static Folding and Deploying of Thin-Walled Tube Flexure Hinges with Double Slots 被引量:6
13
作者 YANG Hui DENG Zongquan +2 位作者 LIU Rongqiang WANG Yan GUO Hongwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期279-286,共8页
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solv... The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress. 展开更多
关键词 design optimization quasi-static folding and deploying flexure hinges thin-walled tube response surface method numerical simulation
在线阅读 下载PDF
Novel Annulus-shaped Flexure Pivot in Rotation Application and Dimensionless Design 被引量:7
14
作者 BI Shusheng ZHAO Shanshan SUN Minglei YU Jingjun ZONG Guanghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期800-809,共10页
Large-deflection flexure pivot is widely used in high precision rotation application, but there are less flexure configurations and simple and convenient design methods, This paper presents a novel large-deflection cu... Large-deflection flexure pivot is widely used in high precision rotation application, but there are less flexure configurations and simple and convenient design methods, This paper presents a novel large-deflection curved-compliant annulus-shaped flexure pivot composed of six curved beam flexure elements. It can offer more than lO^angular stroke theoretically. Firstly, main-motion pseudo-rigid-body method is introduced to establish the flexure pivot model. Although pseudo-rigid-body method can be used to analyze the large-deformation flexure pivot performance, the method is definitely a laborious and difficult task for designing this novel flexure pivot. In order to simply the designing process, dimension-design graphs based on the parametric models and finite element analysis is presented. Using the dimension-design method as a tool, the designers can determine the optimal geometry rapidly, based on the stiffness and rotation demands of an annulus-shaped flexure pivot. Finally, dimension-design graph examples are given whose primary design aims to achieve a rotation stroke of annulus-shaped flexure pivot. The finite element analysis results show that the relative designing error between anticipative rotation stroke and graph design result is less than 4%. The dimensionless method used in designing annulus-shaped flexure pivot can reduce design process in both time and complexity. The novel annulus-shaped flexure pivot and dimension-design method are helpful supplement to configuration and design method of large-deflection flexure pivot. 展开更多
关键词 annulus-shaped flexure pivot dimensionless design pseudo-rigid-body model
在线阅读 下载PDF
Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms 被引量:6
15
作者 WANG Nianfeng LIANG Xiaohe ZHANG Xianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期776-784,共9页
Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtain... Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion. 展开更多
关键词 corrugated flexure beam stiffness analysis compliant mechanisms
在线阅读 下载PDF
Design and Dynamic Modeling of a 2-DOF Decoupled Flexure-Based Mechanism 被引量:3
16
作者 QIN Yanding TIAN Yanling ZHANG Dawei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期688-696,共9页
Flexure mechanisms with decoupled characteristics have been widely utilized in precision positioning applications.However,these mechanisms suffer from either slow response or low load capability.Furthermore,asymmetric... Flexure mechanisms with decoupled characteristics have been widely utilized in precision positioning applications.However,these mechanisms suffer from either slow response or low load capability.Furthermore,asymmetric design always leads to thermal error.In order to solve these issues,a novel 2-DOF decoupled mechanism is developed by monolithically manufacturing sets of statically indeterminate symmetric(SIS) flexure structures in parallel.Symmetric design helps to eliminate the thermal error and Finite Element Analysis(FEA) results show that the maximum coupling ratio between X and Y axes is below 0.25% when a maximum pretension force of 200 N is applied.By ignoring the mass effect,all the SIS flexure structures are simplified to "spring-damper" components,from which the static and dynamics model are derived.The relation between the first resonant frequency of the mechanism and the load is investigated by incorporating the load mass into the proposed dynamics model.Analytical results show that even with a load of 0.5 kg,the first resonant frequency is still higher than 300 Hz,indicating a high load capability.The mechanism's static and dynamic performances are experimentally examined.The linear stiffnesses of the mechanism at the working platform and at the driving point are measured to be 3.563 0 N·μm-1 and 3.362 1 N·μm-1,respectively.The corresponding estimation values from analytical models are 3.405 7 N·μm-1 and 3.381 7 N·μm-1,which correspond to estimation errors of-4.41% and 0.6%,respectively.With an additional load of 0.16 kg,the measured and estimated first resonant frequencies are 362 Hz and 365 Hz,respectively.The estimation error is only 0.55%.The analytical and experimental results show that the developed mechanism has good performances in both decoupling ability and load capability;its static and dynamic performance can be precisely estimated from corresponding analytical models.The proposed mechanism has wide potentials in precision positioning applications. 展开更多
关键词 precision positioning flexure hinge DYNAMICS decoupled structure
在线阅读 下载PDF
Effect of Degree-of-Symmetry on Kinetostatic Characteristics of Flexure Mechanisms:A Comparative Case Study 被引量:1
17
作者 Xiao-Bing He Jing-Jun Yu +1 位作者 Wan-Wan Zhang Guang-Bo Hao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期54-65,共12页
The current research of kinetostatic characteristics in flexure mechanisms mainly focus on the improvement of accuracy. To reduce or eliminate the parasitic motion is considered as an approach by using the common know... The current research of kinetostatic characteristics in flexure mechanisms mainly focus on the improvement of accuracy. To reduce or eliminate the parasitic motion is considered as an approach by using the common knowledge of symmetry. However, there is no study on designing the flexure mechanisms with symmetrical features as many as possible for better kinetostatic performance, when considering the resulting cost by the symmetry. In this paper, the concept of degree of symmetry(DoS) is proposed for the first time, which is committed to symmetry design in the phase of conceptual design. A class of flexure mechanisms with 0?DoS, 1?DoS, 2?DoS and 3?DoS are synthesized respectively based on the Freedom and Constraint Topology method. Their overall compliance matrices in an analytical form formulated within the framework of the screw theory are used to analyze and compare the effect of different number of DoS on the kinetostatic characteristics for flexure mechanisms. The finite element analysis(FEA) simulations are implemented to verify the analytical results. These results show that the higher the DoS is, the smaller the parasitic motion error will be. The flexure model with 3?DoS is optimized according to the overall compliance matrix and then tested by using the FEA simulation. The testing result shows that with the best combination parameters, the parasitic motion error for 3?DoS mechanism is almost eliminated. This research introduces a design principle which can alleviate the unwanted parasitic motion for better accuracy. 展开更多
关键词 flexure mechanism SYMMETRY Kinetostatic characteristics FEA simulation
在线阅读 下载PDF
Kinematics modeling of a 6-PSS parallel mechanism with wide-range flexure hinges 被引量:1
18
作者 杜志江 史若冲 董为 《Journal of Central South University》 SCIE EI CAS 2012年第9期2482-2487,共6页
A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspac... A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspace.A three-layer back-propagation(BP) neural network was utilized to the kinematics analysis,in which learning samples containing 1 280 groups of data based on stiffness-matrix method were used to train the BP model.The kinematics performance was accurately calculated by using the constructed BP model with 19 hidden nodes.Compared with the stiffness model,the simulation and numerical results validate that BP model can achieve millisecond level computation time and micron level calculation accuracy.The concept and approach outlined can be extended to a variety of applications. 展开更多
关键词 flexible parallel manipulator wide-range flexure hinge kinematics model neural network
在线阅读 下载PDF
A precise solution for prediction of fiber-reinforced concrete behavior under flexure 被引量:1
19
作者 R.AHMADI P.GHODDOUSI +1 位作者 M.SHARIFI V.Mojarrad BAHREH 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第7期495-502,共8页
This paper presents a precise solution to predict the behavior of steel fiber reinforced concrete(SFRC) under the four point bending test(FPBT).All the force components at the beam section(before and after cracking) a... This paper presents a precise solution to predict the behavior of steel fiber reinforced concrete(SFRC) under the four point bending test(FPBT).All the force components at the beam section(before and after cracking) are formulated by applying these assumptions:a realistic stress-strain model is used for concrete behavior in compression,a linear response is considered for the uncracked tension region in a concrete constitutive model,and an exponential relationship is proposed as a stress-crack opening in the crack region which requires two parameters.Then the moment capacity of the critical cracked section is calculated by using these forces and satisfying equilibrium law at the section.Parametric studies are done on the behavior of SFRC to assess the sensitivity of the solution.Finally,this solution is validated with some existing experimental data.The result shows the proposed solution is able to estimate the behavior of SFRC under FPBT. 展开更多
关键词 Steel fiber reinforced concrete(SFRC) flexure Stress-crack opening Four point bending test(FPBT)
原文传递
A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing 被引量:1
20
作者 Zhen Zhang Peng Yan Guangbo Hao 《Engineering》 SCIE EI 2017年第5期708-715,共8页
This paper presents the design, development, and control of a large range beam flexure-based nano servo system for the micro-stereolithography (MSL) process. As a key enabler of high accuracy in this process, a comp... This paper presents the design, development, and control of a large range beam flexure-based nano servo system for the micro-stereolithography (MSL) process. As a key enabler of high accuracy in this process, a compact desktop-size beam flexure-based nanopositioner was designed with millimeter range and nanometric motion quality. This beam flexure-based motion system is highly suitable for harsh operation conditions, as no assembly or maintenance is required during the operation. From a mechanism design viewpoint, a mirror-symmetric arrangement and appropriate redundant constraints are crucial to reduce undesired parasitic motion. Detailed finite element analysis (FEA) was conducted and showed satisfactory mechanical features. With the identified dynamic models of the nanopositioner, real-time control strategies were designed and implemented into the monolithically fabricated prototype system, demonstrating the enhanced tracking capability of the MSL process. The servo system has both a millimeter operating range and a root mean square (RMS) tracking error of about 80 nm for a circular traiectorv. 展开更多
关键词 Precision additive manufacturing Micro-stereolithography NANOPOSITIONING Beam flexure
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部