The flexible body modeling theory was demonstrated. An example of modeling a kind of automobile’s front suspension as a multi-flexible system was shown. Finally, it shows that the simulation results of multi-flexible...The flexible body modeling theory was demonstrated. An example of modeling a kind of automobile’s front suspension as a multi-flexible system was shown. Finally, it shows that the simulation results of multi-flexible dynamic model more approach the road test data than those of multi-rigid dynamic model do. Thus, it is fully testified that using multi-flexible body theory to model is necessary and effective.展开更多
To strengthen the regulation of controlling shareholders and actual controllers(dual controllers),China's Company Law of 2024 introduces deemed director provisions(DDPs)in articles 180 and 192.Through legal fictio...To strengthen the regulation of controlling shareholders and actual controllers(dual controllers),China's Company Law of 2024 introduces deemed director provisions(DDPs)in articles 180 and 192.Through legal fiction,fiduciary duty and joint liability can be imposed directly on dual controllers without legal directorship,thereby addressing the accountability gaps caused by traditional status-based imputation.However,the DDPs face the implementation challenge due to the openness of key terms like'actually executing company affairs'and'instructing',coupled with the need for a precise review standard by judges when making determinations.It is essential to adopt a flexible system approach in judicial interpretation by the Supreme People's Court.The system comprises three elements:formality,diligence,and reliance,which correspond to the principles of separate legal personality,parity of power and accountability,and equitable protection of interests.Through segmented evaluation and complementary interaction of the elements,this approach will provide judges with a relatively clear framework to avoid arbitrary adjudication and preserve the adaptability of the DDPs to complex business realities.展开更多
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal...The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
The deep seabed is known for its abundant reserves of various mineral resources.Notably,the Clarion Clipperton(C-C)mining area in the northeast Pacific Ocean,where China holds exploration rights,is particularly rich i...The deep seabed is known for its abundant reserves of various mineral resources.Notably,the Clarion Clipperton(C-C)mining area in the northeast Pacific Ocean,where China holds exploration rights,is particularly rich in deep-sea polymetallic nodules.These nodules,which are nodular and unevenly distributed in seafloor sediments,have significant industrial exploitation value.Over the decades,the deep-sea mining industry has increasingly adopted systems that combine rigid and flexible risers supported by large surface mining vessels.However,current systems face economic and structural stability challenges,hindering the development of deep-sea mining technology.This paper proposes a new structural design for a deep-sea mining system based on flexible risers,validated through numerical simulations and experimental research.The system composition,function and operational characteristics are comprehensively introduced.Detailed calculations determine the production capacity of the deep-sea mining system and the dimensions of the seabed mining subsystem.Finite element numerical simulations analyze the morphological changes of flexible risers and the stress conditions at key connection points under different ocean current incident angles.Experimental research verifies the feasibility of collaborative movement between two tethered underwater devices.The proposed deep-sea mining system,utilizing flexible risers,significantly advances the establishment of a commercial deep-sea mining system.The production calculations and parameter determinations provide essential references for the system’s future detailed design.Furthermore,the finite element simulation model established in this paper provides a research basis,and the method established in this paper offers a foundation for subsequent research under more complex ocean conditions.The control strategy for the collaborative movement between two tethered underwater devices provides an effective solution for deep-sea mining control systems.展开更多
Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration...Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration characteristics of rotor systems,a flexible rotor system model considering the unbalanced mass is proposed.The time-varying bearing force is considered.The developed model is verified by the experimental and theoretical frequency spectrums.The displacements and axis orbits of flexible and rigid rotor systems are compared.The results show that the unbalanced mass will affect the vibration characteristics of rotor system.This model can be more suitable and effective to calculate vibration characteristics of rotor system with the flexible deformation and unbalanced mass.This paper provides a new reference and research method for predicting the vibrations of flexible rotor system considering the unbalanced mass.展开更多
With the advancement of artificial intelligence,optic in-sensing reservoir computing based on emerging semiconductor devices is high desirable for real-time analog signal processing.Here,we disclose a flexible optomem...With the advancement of artificial intelligence,optic in-sensing reservoir computing based on emerging semiconductor devices is high desirable for real-time analog signal processing.Here,we disclose a flexible optomemristor based on C_(27)H_(30)O_(15)/FeOx heterostructure that presents a highly sensitive to the light stimuli and artificial optic synaptic features such as short-and long-term plasticity(STP and LTP),enabling the developed optomemristor to implement complex analogy signal processing through building a real-physical dynamic-based in-sensing reservoir computing algorithm and yielding an accuracy of 94.88%for speech recognition.The charge trapping and detrapping mediated by the optic active layer of C_(27)H_(30)O_(15) that is extracted from the lotus flower is response for the positive photoconductance memory in the prepared optomemristor.This work provides a feasible organic−inorganic heterostructure as well as an optic in-sensing vision computing for an advanced optic computing system in future complex signal processing.展开更多
The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with ...The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system.展开更多
3D-printed Ti_(3)C_(2)T_(x) MXene-based interdigital micro-supercapacitors(MSCs)have great potential as energy supply devices in the field of microelectronics due to their short ion diffusion path,high conductivity,ex...3D-printed Ti_(3)C_(2)T_(x) MXene-based interdigital micro-supercapacitors(MSCs)have great potential as energy supply devices in the field of microelectronics due to their short ion diffusion path,high conductivity,excellent pseudocapacitance,and fast charging capabilities.However,searching for eco-friendly aqueous Ti_(3)C_(2)T_(x) MXene-based inks without additives and preventing severe restack of MXene nanosheets in high-concentration inks are significantly challenging.This study develops an additive-free,highly printable,viscosity adjustable,and environmentally friendly MXene/carbon nanotube(CNT)hybrid aqueous inks,in which the CNT can not only adjust the viscosity of Ti_(3)C_(2)T_(x) MXene inks but also widen the interlayer spacing of adjacent Ti_(3)C_(2)T_(x) MXene nanosheets effectively.The optimized MXene/CNT composite inks are successfully adopted to construct various configurations of MSCs with remarkable shape fidelity and geometric accuracy,together with enhanced surface area accessibility for electrons and ions diffusion.As a result,the constructed interdigital symmetrical MSCs demonstrate outstanding areal capacitance(1249.3 mF cm^(-2)),superior energy density(111μWh cm^(-2) at 0.4mWcm^(-2)),and high power density(8mWcm^(-2) at 47.1μWh cm^(-2)).Furthermore,a self-powered modular system of solar cells integrated with MXene/CNT-MSCs and pressure sensors is successfully tailored,simultaneously achieving efficient solar energy collection and real-time human activities monitoring.This work offers insight into the understanding of the role of CNTs in MXene/CNT ink.Moreover,it provides a new approach for preparing environmentally friendly MXene-based inks for the 3D printing of high-performance MSCs,contributing to the development of miniaturized,flexible,and self-powered printable electronic microsystems.展开更多
The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,f...The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,flexible sensors are evolving from a single sensing element to a smarter system,which is capable of highly efficient acquisition,analysis,and even perception of vast,multifaceted data.While challenging from a manual perspective,the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm(machine learning)and the framework(artificial synapses)level.This review presents the recent progress of the emerging AI-driven,intelligent flexible sensing systems.The basic concept of machine learning and artificial synapses are introduced.The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed,which significantly advances the applications such as flexible sensory systems,soft/humanoid robotics,and human activity monitoring.As two of the most profound innovations in the twenty-first century,the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.展开更多
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
In spite of its intrinsic complexities,the passive gait of bipedal robots on a sloping ramp is a subject of interest for numerous researchers.What distinguishes the present research from similar works is the considera...In spite of its intrinsic complexities,the passive gait of bipedal robots on a sloping ramp is a subject of interest for numerous researchers.What distinguishes the present research from similar works is the consideration of flexibility in the constituent links of this type of robotic systems.This is not a far-fetched assumption because in the transient(impact)phase,due to the impulsive forces which are applied to the system,the likelihood of exciting the vibration modes increases considerably.Moreover,the human leg bones that are involved in walking are supported by viscoelastic muscles and ligaments.Therefore,for achieving more exact results,it is essential to model the robot links with viscoelastic properties.To this end,the Gibbs-Appell formulation and Newton's kinematic impact law are used to derive the most general form of the system's dynamic equations in the swing and transient phases of motion.The most important issue in the passive walking motion of bipedal robots is the determination of the initial robot configuration with which the system could accomplish a periodic and stable gait solely under the effect of gravitational force.The extremely unstable nature of the system studied in this paper and the vibrations caused by the impulsive forces induced by the impact of robot feet with the inclined surface are some of the very serious challenges encountered for achieving the above-mentioned goal.To overcome such challenges,an innovative method that uses a combination of the linearized equations of motion in the swing phase and the algebraic motion equations in the transition phase is presented in this paper to obtain an eigenvalue problem.By solving this problem,the suitable initial conditions that are necessary for the passive gait of this bipedal robot on a sloping surface are determined.The effects of the characteristic parameters of elastic links including the modulus of elasticity and the Kelvin-Voigt coefficient on the walking stability of this type of robotic systems are also studied.The findings of this parametric study reveal that the increase in the Kelvin-Voigt coefficient enhances the stability of the robotic system,while the increase in the modulus of elasticity has an opposite effect.展开更多
To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evalu...To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.展开更多
Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati...Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.展开更多
To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the ...To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.展开更多
There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and grea...There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft.展开更多
Photodetectors with weak-light detection capabilities play an indispensable role in various crucial fields such as health monitors,imaging,optical communication,and etc.Nevertheless,the detection of weak light signals...Photodetectors with weak-light detection capabilities play an indispensable role in various crucial fields such as health monitors,imaging,optical communication,and etc.Nevertheless,the detection of weak light signals is often severely interfered by multiple factors such as background light,dark noise and circuit noise,making it difficult to accurately capture signals.While traditional technologies like silicon photomultiplier tubes excel in sensitivity,their high cost and inherent fragility restrict their widespread application.Against this background,perovskite materials have rapidly emerged as a research focus in the field of photodetection due to their simple preparation processes and exceptional optoelectronic properties.Not only are the preparation processes of perovskite materials straightforward and cost-effective,but more importantly,they can be flexibly integrated into flexible and stretchable substrates.This characteristic significantly compensates for the shortcomings of traditional rigid electronic devices in specific application scenarios,opening up entirely new possibilities for photodetection technology.Herein,recent advances in perovskite light detection technology are reviewed.Firstly,the chemical and physical properties of perovskite materials are discussed,highlighting their remarkable advantages in weak-light detection.Subsequently,the review systematically organizes various preparation techniques of perovskite materials and analyses their advantages in different application scenarios.Meanwhile,from the two core dimensions of performance improvement and light absorption enhancement,the key strategies of improving the performance of perovskite weak-light photodetectors are explored.Finally,the review concludes with a brief summary and a discussion on the potential challenges that may arise in the further development of perovskite devices.展开更多
This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Ham...This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.展开更多
The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a...The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Neve...Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.展开更多
文摘The flexible body modeling theory was demonstrated. An example of modeling a kind of automobile’s front suspension as a multi-flexible system was shown. Finally, it shows that the simulation results of multi-flexible dynamic model more approach the road test data than those of multi-rigid dynamic model do. Thus, it is fully testified that using multi-flexible body theory to model is necessary and effective.
基金supported by the National Social Science Fund of China(21AFX019)。
文摘To strengthen the regulation of controlling shareholders and actual controllers(dual controllers),China's Company Law of 2024 introduces deemed director provisions(DDPs)in articles 180 and 192.Through legal fiction,fiduciary duty and joint liability can be imposed directly on dual controllers without legal directorship,thereby addressing the accountability gaps caused by traditional status-based imputation.However,the DDPs face the implementation challenge due to the openness of key terms like'actually executing company affairs'and'instructing',coupled with the need for a precise review standard by judges when making determinations.It is essential to adopt a flexible system approach in judicial interpretation by the Supreme People's Court.The system comprises three elements:formality,diligence,and reliance,which correspond to the principles of separate legal personality,parity of power and accountability,and equitable protection of interests.Through segmented evaluation and complementary interaction of the elements,this approach will provide judges with a relatively clear framework to avoid arbitrary adjudication and preserve the adaptability of the DDPs to complex business realities.
基金funded by the National Natural Science Foundation of China(52475580)the Special Foundation of the Taishan Scholar Project(tsqn202211077,tsqn202311077)+3 种基金Shandong Provincial Excellent Overseas Young Scholar Foundation(2023HWYQ-069)the Shandong Provincial Natural Science Foundation(ZR2023ME118,ZR2023QF080)the Natural Science Foundation of Qingdao City(23-2-1-219-zyyd-jch,23-2-1-111-zyyd-jch)the Fundamental Research Funds for the Central Universities(23CX06032A).
文摘The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
基金Supported by Finance Science and Technology Project of Hainan Province under Grant No.ZDKJ2021027the National Natural Science Foundation of China under Grant No.52231012.
文摘The deep seabed is known for its abundant reserves of various mineral resources.Notably,the Clarion Clipperton(C-C)mining area in the northeast Pacific Ocean,where China holds exploration rights,is particularly rich in deep-sea polymetallic nodules.These nodules,which are nodular and unevenly distributed in seafloor sediments,have significant industrial exploitation value.Over the decades,the deep-sea mining industry has increasingly adopted systems that combine rigid and flexible risers supported by large surface mining vessels.However,current systems face economic and structural stability challenges,hindering the development of deep-sea mining technology.This paper proposes a new structural design for a deep-sea mining system based on flexible risers,validated through numerical simulations and experimental research.The system composition,function and operational characteristics are comprehensively introduced.Detailed calculations determine the production capacity of the deep-sea mining system and the dimensions of the seabed mining subsystem.Finite element numerical simulations analyze the morphological changes of flexible risers and the stress conditions at key connection points under different ocean current incident angles.Experimental research verifies the feasibility of collaborative movement between two tethered underwater devices.The proposed deep-sea mining system,utilizing flexible risers,significantly advances the establishment of a commercial deep-sea mining system.The production calculations and parameter determinations provide essential references for the system’s future detailed design.Furthermore,the finite element simulation model established in this paper provides a research basis,and the method established in this paper offers a foundation for subsequent research under more complex ocean conditions.The control strategy for the collaborative movement between two tethered underwater devices provides an effective solution for deep-sea mining control systems.
基金Support by Shanxi Provincial Key Research and Development Plan of China(Grant No.2024GH-ZDXM-29)National Natural Science Foundation of China(Grant No.52175120)Shaanxi Provincial Innovation Capability Support Program of China(Grant No.2024RS-CXTD-15)。
文摘Unbalanced force produced by the unbalanced mass will affect vibrations of rotor systems,which probably results in the components failures of rotating machinery.To study the effects of unbalanced mass on the vibration characteristics of rotor systems,a flexible rotor system model considering the unbalanced mass is proposed.The time-varying bearing force is considered.The developed model is verified by the experimental and theoretical frequency spectrums.The displacements and axis orbits of flexible and rigid rotor systems are compared.The results show that the unbalanced mass will affect the vibration characteristics of rotor system.This model can be more suitable and effective to calculate vibration characteristics of rotor system with the flexible deformation and unbalanced mass.This paper provides a new reference and research method for predicting the vibrations of flexible rotor system considering the unbalanced mass.
基金supported by the Key Project of Chongqing Natural Science Foundation Joint Fund[CSTB2023NSCQ-LZX0103,(G.Z.)]Chongqing Natural Science Foundation[CSTB2024NSCQ-MSX0012,(C.L.)]+1 种基金Fundamental Research Funds for the Central Universities[SWUZLPY03,(G.Z.)]Fundamental Research Funds for the Central Universities[Swu020019,(G.Z.):SWU-XDJH202319,(G.Z.)1].
文摘With the advancement of artificial intelligence,optic in-sensing reservoir computing based on emerging semiconductor devices is high desirable for real-time analog signal processing.Here,we disclose a flexible optomemristor based on C_(27)H_(30)O_(15)/FeOx heterostructure that presents a highly sensitive to the light stimuli and artificial optic synaptic features such as short-and long-term plasticity(STP and LTP),enabling the developed optomemristor to implement complex analogy signal processing through building a real-physical dynamic-based in-sensing reservoir computing algorithm and yielding an accuracy of 94.88%for speech recognition.The charge trapping and detrapping mediated by the optic active layer of C_(27)H_(30)O_(15) that is extracted from the lotus flower is response for the positive photoconductance memory in the prepared optomemristor.This work provides a feasible organic−inorganic heterostructure as well as an optic in-sensing vision computing for an advanced optic computing system in future complex signal processing.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272123 and 12302047)the Natural Science Foundation of Jiangsu Province(Grant No.BK20231185)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX24_0192).
文摘The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system.
基金supported by the National Natural Science Foundation of China(52174247,52477213,52401244 and 22302066)Science and Technology Innovation Program of Hunan Province(No.2022RC1088)+2 种基金Natural Science Foundation of Hunan Province(2023JJ40255)Zhejiang Provincial Natural Science Foundation of China(No.LQ24B020005)Scientific Research Foundation of Hunan Provincial Education Department(22B0599 and 23A0442).
文摘3D-printed Ti_(3)C_(2)T_(x) MXene-based interdigital micro-supercapacitors(MSCs)have great potential as energy supply devices in the field of microelectronics due to their short ion diffusion path,high conductivity,excellent pseudocapacitance,and fast charging capabilities.However,searching for eco-friendly aqueous Ti_(3)C_(2)T_(x) MXene-based inks without additives and preventing severe restack of MXene nanosheets in high-concentration inks are significantly challenging.This study develops an additive-free,highly printable,viscosity adjustable,and environmentally friendly MXene/carbon nanotube(CNT)hybrid aqueous inks,in which the CNT can not only adjust the viscosity of Ti_(3)C_(2)T_(x) MXene inks but also widen the interlayer spacing of adjacent Ti_(3)C_(2)T_(x) MXene nanosheets effectively.The optimized MXene/CNT composite inks are successfully adopted to construct various configurations of MSCs with remarkable shape fidelity and geometric accuracy,together with enhanced surface area accessibility for electrons and ions diffusion.As a result,the constructed interdigital symmetrical MSCs demonstrate outstanding areal capacitance(1249.3 mF cm^(-2)),superior energy density(111μWh cm^(-2) at 0.4mWcm^(-2)),and high power density(8mWcm^(-2) at 47.1μWh cm^(-2)).Furthermore,a self-powered modular system of solar cells integrated with MXene/CNT-MSCs and pressure sensors is successfully tailored,simultaneously achieving efficient solar energy collection and real-time human activities monitoring.This work offers insight into the understanding of the role of CNTs in MXene/CNT ink.Moreover,it provides a new approach for preparing environmentally friendly MXene-based inks for the 3D printing of high-performance MSCs,contributing to the development of miniaturized,flexible,and self-powered printable electronic microsystems.
基金National Natural Science Foundation of China(Nos.52275346 and 52075287)Tsinghua University Initiative Scientific Research Program(20221080070).
文摘The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,flexible sensors are evolving from a single sensing element to a smarter system,which is capable of highly efficient acquisition,analysis,and even perception of vast,multifaceted data.While challenging from a manual perspective,the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm(machine learning)and the framework(artificial synapses)level.This review presents the recent progress of the emerging AI-driven,intelligent flexible sensing systems.The basic concept of machine learning and artificial synapses are introduced.The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed,which significantly advances the applications such as flexible sensory systems,soft/humanoid robotics,and human activity monitoring.As two of the most profound innovations in the twenty-first century,the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
文摘In spite of its intrinsic complexities,the passive gait of bipedal robots on a sloping ramp is a subject of interest for numerous researchers.What distinguishes the present research from similar works is the consideration of flexibility in the constituent links of this type of robotic systems.This is not a far-fetched assumption because in the transient(impact)phase,due to the impulsive forces which are applied to the system,the likelihood of exciting the vibration modes increases considerably.Moreover,the human leg bones that are involved in walking are supported by viscoelastic muscles and ligaments.Therefore,for achieving more exact results,it is essential to model the robot links with viscoelastic properties.To this end,the Gibbs-Appell formulation and Newton's kinematic impact law are used to derive the most general form of the system's dynamic equations in the swing and transient phases of motion.The most important issue in the passive walking motion of bipedal robots is the determination of the initial robot configuration with which the system could accomplish a periodic and stable gait solely under the effect of gravitational force.The extremely unstable nature of the system studied in this paper and the vibrations caused by the impulsive forces induced by the impact of robot feet with the inclined surface are some of the very serious challenges encountered for achieving the above-mentioned goal.To overcome such challenges,an innovative method that uses a combination of the linearized equations of motion in the swing phase and the algebraic motion equations in the transition phase is presented in this paper to obtain an eigenvalue problem.By solving this problem,the suitable initial conditions that are necessary for the passive gait of this bipedal robot on a sloping surface are determined.The effects of the characteristic parameters of elastic links including the modulus of elasticity and the Kelvin-Voigt coefficient on the walking stability of this type of robotic systems are also studied.The findings of this parametric study reveal that the increase in the Kelvin-Voigt coefficient enhances the stability of the robotic system,while the increase in the modulus of elasticity has an opposite effect.
文摘To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.
基金supported by the National Key R&D Plan of China(Grant No.2023YFB3210400)the National Natural Science Foundation of China(No.62174101)+2 种基金the Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC010603)the Fundamental Research Funds of Shandong University(2020QNQT001)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,the Natural Science Foundation of Qingdao-Original exploration project(No.24-4-4-zrjj-139-jch).
文摘Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
基金National Key R&D Program of China of the 13th Five-Year Plan(No.2018YFD1100704)。
文摘To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.
基金supported by the Basic Research Development Program of China(No.JCKY2021607B036)the National Natural Science Foundation of China(No.52275512).
文摘There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft.
文摘Photodetectors with weak-light detection capabilities play an indispensable role in various crucial fields such as health monitors,imaging,optical communication,and etc.Nevertheless,the detection of weak light signals is often severely interfered by multiple factors such as background light,dark noise and circuit noise,making it difficult to accurately capture signals.While traditional technologies like silicon photomultiplier tubes excel in sensitivity,their high cost and inherent fragility restrict their widespread application.Against this background,perovskite materials have rapidly emerged as a research focus in the field of photodetection due to their simple preparation processes and exceptional optoelectronic properties.Not only are the preparation processes of perovskite materials straightforward and cost-effective,but more importantly,they can be flexibly integrated into flexible and stretchable substrates.This characteristic significantly compensates for the shortcomings of traditional rigid electronic devices in specific application scenarios,opening up entirely new possibilities for photodetection technology.Herein,recent advances in perovskite light detection technology are reviewed.Firstly,the chemical and physical properties of perovskite materials are discussed,highlighting their remarkable advantages in weak-light detection.Subsequently,the review systematically organizes various preparation techniques of perovskite materials and analyses their advantages in different application scenarios.Meanwhile,from the two core dimensions of performance improvement and light absorption enhancement,the key strategies of improving the performance of perovskite weak-light photodetectors are explored.Finally,the review concludes with a brief summary and a discussion on the potential challenges that may arise in the further development of perovskite devices.
基金financially supported by Sichuan Science and Technology Program(Grant No.2023NSFSC1980).
文摘This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U1906233 and 52201312)Dalian High-Level Talent Innovation Program(Grant No.2021RD16)the Natural Science Foundation of Liaoning Province of China(Grant No.2023-BSBA-052).
文摘The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers.
基金supported by the National Research Foundation of Korea(NRF)through a grant provided by the Korean government(No.NRF-2021R1F1A1063451).
文摘Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.