Scintillator-mediated indirect X-ray detectors,which transduce high-energy X-ray photons into detectable visible light,underpin critical applications in medical diagnostics,non-destructive imaging,and high-energy phys...Scintillator-mediated indirect X-ray detectors,which transduce high-energy X-ray photons into detectable visible light,underpin critical applications in medical diagnostics,non-destructive imaging,and high-energy physics.Flexible scintillator films represent a transformative advancement for next-generation X-ray imaging,enabling conformal integration biological tissues and complex geometries.The pursuit of solution-processed scintillators with benchmark light yield,ultralow detection limit,and superior mechanical robustness constitutes the primary objective in this field.This review comprehensively analyzes emerging high-performance scintillators,including lanthanide-doped nanocrystals,organic emitters,perovskites,metal-organic frameworks(MOFs),atomically metal clusters,and metal-organic complexes,focusing on strategies to enhance radioluminescence yield,minimize detection limits,and achieve mechanical robustness.We elucidate carrier dynamics from exciton formation to radiative recombination,alongside advanced fabrication paradigms for flexible/stretchable films via polymer encapsulation and intrinsically flexible designs.The resulting devices demonstrate exceptional capabilities in static,dynamic,and multifunctional imaging under ultralow doses.Critical frontiers in radiation stability,artificial intelligence(AI)-accelerated material discovery,and light propagation engineering are outlined to guide future detector development.展开更多
X-ray imaging technologies such as digital radiography(DR),is an important aspect of modern non-destructive testing and medical diagnosis.Innovative flexible X-ray detector technologies have recently been proposed and...X-ray imaging technologies such as digital radiography(DR),is an important aspect of modern non-destructive testing and medical diagnosis.Innovative flexible X-ray detector technologies have recently been proposed and are now receiving increasing attention owing to their superior material flexibility compared with traditional flat-panel detectors.This work aims to study these innovative flexible X-ray detectors in terms of their effectiveness in DR imaging,such as detection efficiency and spatial resolution.To achieve this goal,first,a Monte Carlo model was developed and calibrated to an in-lab 150 kV DR imaging system containing a flat-panel X-ray detector.Second,the validated model was updated with various types of flexible X-ray detectors to assess their performance in nearly realistic conditions.Key parameters such as the detection efficiency pertaining to the crystal material and thickness were studied and analyzed across a broader energy range up to 662 keV.Finally,the imaging performance of the different detectors was evaluated and compared to that of the flat-panel detector in the 150 kV DR imaging system.The results show that the flexible detectors such as the CsPbBr3crystal detector deliver promising performance in X-ray imaging and can be applied to a wider range of application scenarios,especially those requiring accurate detection at challenging angles.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52533008,22205104,22305127,and 21835003)the National Key Research and Development Program of China(Nos.2024YFB3612500,2024YFB3612600,and 2023YFB3608900)+2 种基金Basic Research Program of Jiangsu Province(No.BK20243057)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Nos.NY222078 and NY222079)Project of State Key Laboratory of Organic Electronics and Information Displays(Nos.GZR2023010031 and GZR2023010053).
文摘Scintillator-mediated indirect X-ray detectors,which transduce high-energy X-ray photons into detectable visible light,underpin critical applications in medical diagnostics,non-destructive imaging,and high-energy physics.Flexible scintillator films represent a transformative advancement for next-generation X-ray imaging,enabling conformal integration biological tissues and complex geometries.The pursuit of solution-processed scintillators with benchmark light yield,ultralow detection limit,and superior mechanical robustness constitutes the primary objective in this field.This review comprehensively analyzes emerging high-performance scintillators,including lanthanide-doped nanocrystals,organic emitters,perovskites,metal-organic frameworks(MOFs),atomically metal clusters,and metal-organic complexes,focusing on strategies to enhance radioluminescence yield,minimize detection limits,and achieve mechanical robustness.We elucidate carrier dynamics from exciton formation to radiative recombination,alongside advanced fabrication paradigms for flexible/stretchable films via polymer encapsulation and intrinsically flexible designs.The resulting devices demonstrate exceptional capabilities in static,dynamic,and multifunctional imaging under ultralow doses.Critical frontiers in radiation stability,artificial intelligence(AI)-accelerated material discovery,and light propagation engineering are outlined to guide future detector development.
基金supported by the China Natural Science Fund (No.52171253)Natural Science Foundation of Sichuan (No.2022NSFSC0949)。
文摘X-ray imaging technologies such as digital radiography(DR),is an important aspect of modern non-destructive testing and medical diagnosis.Innovative flexible X-ray detector technologies have recently been proposed and are now receiving increasing attention owing to their superior material flexibility compared with traditional flat-panel detectors.This work aims to study these innovative flexible X-ray detectors in terms of their effectiveness in DR imaging,such as detection efficiency and spatial resolution.To achieve this goal,first,a Monte Carlo model was developed and calibrated to an in-lab 150 kV DR imaging system containing a flat-panel X-ray detector.Second,the validated model was updated with various types of flexible X-ray detectors to assess their performance in nearly realistic conditions.Key parameters such as the detection efficiency pertaining to the crystal material and thickness were studied and analyzed across a broader energy range up to 662 keV.Finally,the imaging performance of the different detectors was evaluated and compared to that of the flat-panel detector in the 150 kV DR imaging system.The results show that the flexible detectors such as the CsPbBr3crystal detector deliver promising performance in X-ray imaging and can be applied to a wider range of application scenarios,especially those requiring accurate detection at challenging angles.