Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it i...Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction.展开更多
Prey species may have their own optimal escape strategy to balance predation risks and the energetic cost of fleeing.Some species have an advantage when maintaining a short fleeing distance,while others may favour an ...Prey species may have their own optimal escape strategy to balance predation risks and the energetic cost of fleeing.Some species have an advantage when maintaining a short fleeing distance,while others may favour an earlier escape based on microhabitat,size,or body condition.Here,we examined the escape behaviour of the three syntopic Northeast Asian anuran species:Mongolian toads(Strauchbufo raddei),Amur brown frogs(Rana amurensis),and Japanese treefrogs(Dryophytes japonicus)in Mongolia,Russia,China and DPR Korea.We examined flight initiation distance(FID;the distance from a potential predator to the point when the individual starts to flee)and distance fled(DF;distance between flight initiation and flight termination points)of each species and the effects of microhabitat,sex,and body size.Strauchbufo raddei and R.amurensis had a longer FID than D.japonicus,and S.raddei also had a longer DF than D.japonicus.These trends remained similar when dividing FID and DF by a size proxy(snout-vent length)for all individuals.This suggests that the treefrog D.japonicus used a strategy to stay immobile even when they were detected,and the toad S.raddei reacted quicker and more sensitively to predators despite the presence of toxin.Female S.raddei had a significantly longer FID than males suggesting that females are more sensitive to predation risk in this species,but body size was not significant for any of the three species.Our results indicate that the three sympatric species have different escaping strategies,likely related to differences in physiology and crypticity.展开更多
Escape theory predicts that flight initiation distance (FID = distance between predator and prey when escape begins) is longer when risk is greater and shorter when escape is more costly. A few tests suggest that es...Escape theory predicts that flight initiation distance (FID = distance between predator and prey when escape begins) is longer when risk is greater and shorter when escape is more costly. A few tests suggest that escape theory applies to distance fled. Escape models have not addressed stochastic variables, such as probability of fleeing and of entering refuge, but their economic logic might be applicable. Experiments on several risk factors in the lizard Sceloporus virgatus confirmed all predictions for the above escape variables. FID was greater when approach was faster and more direct, for lizards on ground than on trees, for lizards rarely exposed to humans, for the second of two approaches, and when the predator turned toward lizards rather than away. Lizards fled further during rapid and second consecutive approaches. They were more likely to flee when approached directly, when a predator turned toward them, and during second approaches. They were more likely to enter refuge when approached rapidly. A novel finding is that perch height in trees was unrelated to FID because lizards escaped by moving out of sight, then moving up or down unpredictably. These findings add to a growing body of evidence supporting predictions of escape theory for FID and distance fled. They show that two probabilistic aspects of escape are predictable based on relative predation risk levels. Because individuals differ in boldness, the assessed optimal FID and threshold risks for fleeing and entering refuge are exceeded for an increasing proportion of individuals as risk increases展开更多
Models of optimal escape strategy predict that animals should move away when the costs of fleeing (metabolic and opportunity costs) are outweighed by the costs of remaining. These theoretical models predict that mor...Models of optimal escape strategy predict that animals should move away when the costs of fleeing (metabolic and opportunity costs) are outweighed by the costs of remaining. These theoretical models predict that more vulnerable individuals should be more reactive, moving away when an approaching threat is further away. We tested whether escape behaviour (includ- ing 'escape calling') ofLithobates sphenocephalus approached by a human was influenced by body size or the initial microhabi- tat that the individual was found in. Irrespective of their size, frogs in the open tended to remain immobile, enhancing their cryp- sis. Frogs in cover showed different responses according to their body size, but, contrary to our initial predictions, larger frogs showed greater responsiveness (longer flight initiation distance and distances fled) than small frogs. Small frogs tended to remain closer to water and escaped into water, while larger individuals were more likely to jump to terrestrial cover and call during escape. Density of frogs near the focal animal had no effect on escape behaviour. This study indicates a range of escape responses in this species and points to the importance of divergent escape choices for organisms which live on the edge of different environments .展开更多
Animals living around people may modify their antipredator behavior as a function of proximity to humans,and this response has profound implications for whether or not a population can coexist with humans.We asked whe...Animals living around people may modify their antipredator behavior as a function of proximity to humans,and this response has profound implications for whether or not a population can coexist with humans.We asked whether inland blue-tailed skinks Emoia impar modified their individual antipredator behavior as a function of differential exposure to humans.We conducted multiple consecutive flushes and recorded 2 measures of antipredator response:flight initiation distance(FID),the distance from a threatening stimulus at which an individual flees,and distance fled,the distance an individual fled after a flush.We used a multiple model comparison approach to quantify variation in individual escape behavior across multiple approaches and to test for differences in between-individual variation among populations.We found that individuals tolerated closer approach and fled shorter distances at locations with relatively less human disturbance than at locations with medium and high human disturbance,respectively.In addition,skinks living at high human disturbance sites had less variable FIDs than at low human disturbance sites.Two theories may explain these results.Selection against less favorable phenotypes has reduced behavioral variation in urban habitats and behavioral plasticity allows individuals to flexibly adjust their behavioral patterns in response to human disturbance.These results highlight the importance of studying variation within populations,at the individual level,which may better elucidate the impact that human disturbance has on the behavioral composition of populations.展开更多
基金supported by the National Natural Science Foundation of China(6113900261171132)+4 种基金the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11 0219)the Natural Science Foundation of Jiangsu Education Department(12KJB520013)the Applying Study Foundation of Nantong(BK2011062)the Open Project Program of State Key Laboratory for Novel Software Technology,Nanjing University(KFKT2012B28)the Natural Science Pre-Research Foundation of Nantong University(12ZY016)
文摘Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction.
基金project was funded by the Foreign Youth Talent Program of the Ministry of Science and Technology of the People’s Republic of China(QN2023014004L)to Amaël BORZÉEa grant from the Korea Environmental Industry and Technology Institute(KEITI 2021002270001)to Yikweon JANGThe research was carried out whithin the state assignment of Ministry of Science and Higher Education of the Russian Federation(theme No.124012200182-1).
文摘Prey species may have their own optimal escape strategy to balance predation risks and the energetic cost of fleeing.Some species have an advantage when maintaining a short fleeing distance,while others may favour an earlier escape based on microhabitat,size,or body condition.Here,we examined the escape behaviour of the three syntopic Northeast Asian anuran species:Mongolian toads(Strauchbufo raddei),Amur brown frogs(Rana amurensis),and Japanese treefrogs(Dryophytes japonicus)in Mongolia,Russia,China and DPR Korea.We examined flight initiation distance(FID;the distance from a potential predator to the point when the individual starts to flee)and distance fled(DF;distance between flight initiation and flight termination points)of each species and the effects of microhabitat,sex,and body size.Strauchbufo raddei and R.amurensis had a longer FID than D.japonicus,and S.raddei also had a longer DF than D.japonicus.These trends remained similar when dividing FID and DF by a size proxy(snout-vent length)for all individuals.This suggests that the treefrog D.japonicus used a strategy to stay immobile even when they were detected,and the toad S.raddei reacted quicker and more sensitively to predators despite the presence of toxin.Female S.raddei had a significantly longer FID than males suggesting that females are more sensitive to predation risk in this species,but body size was not significant for any of the three species.Our results indicate that the three sympatric species have different escaping strategies,likely related to differences in physiology and crypticity.
基金supported by a Pippert Science Research Scholar award
文摘Escape theory predicts that flight initiation distance (FID = distance between predator and prey when escape begins) is longer when risk is greater and shorter when escape is more costly. A few tests suggest that escape theory applies to distance fled. Escape models have not addressed stochastic variables, such as probability of fleeing and of entering refuge, but their economic logic might be applicable. Experiments on several risk factors in the lizard Sceloporus virgatus confirmed all predictions for the above escape variables. FID was greater when approach was faster and more direct, for lizards on ground than on trees, for lizards rarely exposed to humans, for the second of two approaches, and when the predator turned toward lizards rather than away. Lizards fled further during rapid and second consecutive approaches. They were more likely to flee when approached directly, when a predator turned toward them, and during second approaches. They were more likely to enter refuge when approached rapidly. A novel finding is that perch height in trees was unrelated to FID because lizards escaped by moving out of sight, then moving up or down unpredictably. These findings add to a growing body of evidence supporting predictions of escape theory for FID and distance fled. They show that two probabilistic aspects of escape are predictable based on relative predation risk levels. Because individuals differ in boldness, the assessed optimal FID and threshold risks for fleeing and entering refuge are exceeded for an increasing proportion of individuals as risk increases
文摘Models of optimal escape strategy predict that animals should move away when the costs of fleeing (metabolic and opportunity costs) are outweighed by the costs of remaining. These theoretical models predict that more vulnerable individuals should be more reactive, moving away when an approaching threat is further away. We tested whether escape behaviour (includ- ing 'escape calling') ofLithobates sphenocephalus approached by a human was influenced by body size or the initial microhabi- tat that the individual was found in. Irrespective of their size, frogs in the open tended to remain immobile, enhancing their cryp- sis. Frogs in cover showed different responses according to their body size, but, contrary to our initial predictions, larger frogs showed greater responsiveness (longer flight initiation distance and distances fled) than small frogs. Small frogs tended to remain closer to water and escaped into water, while larger individuals were more likely to jump to terrestrial cover and call during escape. Density of frogs near the focal animal had no effect on escape behaviour. This study indicates a range of escape responses in this species and points to the importance of divergent escape choices for organisms which live on the edge of different environments .
文摘Animals living around people may modify their antipredator behavior as a function of proximity to humans,and this response has profound implications for whether or not a population can coexist with humans.We asked whether inland blue-tailed skinks Emoia impar modified their individual antipredator behavior as a function of differential exposure to humans.We conducted multiple consecutive flushes and recorded 2 measures of antipredator response:flight initiation distance(FID),the distance from a threatening stimulus at which an individual flees,and distance fled,the distance an individual fled after a flush.We used a multiple model comparison approach to quantify variation in individual escape behavior across multiple approaches and to test for differences in between-individual variation among populations.We found that individuals tolerated closer approach and fled shorter distances at locations with relatively less human disturbance than at locations with medium and high human disturbance,respectively.In addition,skinks living at high human disturbance sites had less variable FIDs than at low human disturbance sites.Two theories may explain these results.Selection against less favorable phenotypes has reduced behavioral variation in urban habitats and behavioral plasticity allows individuals to flexibly adjust their behavioral patterns in response to human disturbance.These results highlight the importance of studying variation within populations,at the individual level,which may better elucidate the impact that human disturbance has on the behavioral composition of populations.