A simple plate crown model was introduced,and the crown-flatness vector analysis method was analyzed.Based on the plate rolling technology,the rolling schedule design of elongation phase is divided into three steps.Fi...A simple plate crown model was introduced,and the crown-flatness vector analysis method was analyzed.Based on the plate rolling technology,the rolling schedule design of elongation phase is divided into three steps.First step is to calculate the reductions of first pass of elongation making full use of the mill capability to decrease the total pass number.The second step is to calculate the pass reduction for the last three or four passes to control crown and flatness by crown-flatness vector analysis method.In the third step,the maximum rolling force limit and the total pass number are adjusted to make the plate gauge at exit equal to target gauge with satisfactory flatness.The on-line application shows that this method is effective.展开更多
An on-line flatness measurement system for steel plate is designed, and that is the flatness meter. The flatness meter is used in the steel plate production line, which is set up on the connecting roller table between...An on-line flatness measurement system for steel plate is designed, and that is the flatness meter. The flatness meter is used in the steel plate production line, which is set up on the connecting roller table between each single equipment, such as between quenching machine and straightener, ACC and straightener, shear finishing section, finished product blanking area, etc. when the steel plate passes through the flatness meter detection area, the detection system automatically starts the detection equipment, and carries out real-time data acquisition and detection on the steel plate. The laser line is used to irradiate the steel plate. After the image is collected, the position offset of the laser line is calculated by image processing and pre calibrated pixel accuracy, so as to obtain the thickness information of the steel plate to be measured. The shape of the steel plate is evaluated, and the information such as head warping, tail warping, head bucking, tail bucking, edge wave, ship type and crown are obtained.展开更多
As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A s...As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules.展开更多
On February 8,2025,a remote area in the Caribbean Sea was rocked by a large M_(W)7.6(USGS,2025) earthquake,centered 209 km SSW of Georgetown,the capital of the Cayman Islands,and the largest city(population~41 000) of...On February 8,2025,a remote area in the Caribbean Sea was rocked by a large M_(W)7.6(USGS,2025) earthquake,centered 209 km SSW of Georgetown,the capital of the Cayman Islands,and the largest city(population~41 000) of the British Overseas Territories(Figure 1).The earthquake was significant due to its large magnitude,potential regional impact,and the possibility of generating a tsunami.展开更多
Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurr...Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.展开更多
Since the initial observation of carbon nanotubes(CNTs)and graphene platelets(GPLs)in the 1990 and 2000s,the demand for high-performance structural applications and multifunctional materials has driven significant int...Since the initial observation of carbon nanotubes(CNTs)and graphene platelets(GPLs)in the 1990 and 2000s,the demand for high-performance structural applications and multifunctional materials has driven significant interest in composite structures reinforced with GPLs and CNTs.Incorporating these nanofillers into matrix materials markedly enhances the mechanical properties of the structures.To further improve efficiency and functionality,func-tionally graded(FG)distributions of CNTs and GPLs have been proposed.This study presents an extensive review of computational approaches developed to predict the global behavior of composite structural components enhanced with CNT and GPL nanofillers.The analysis focuses on key structural elements,such as plate-type configurations,cylindrical and curved shells,and beams,emphasizing the computational techniques utilized to simulate their mechanical behavior.The utilization of three-dimensional elasticity theories and equivalent single-layer(ESL)frameworks,which are widely employed in the modeling and analysis of these composites,is comprehensively discussed.Additionally,the paper examines various mechanical performance aspects,including static,buckling,post-buckling,vibrational,and dynamic responses for the mentioned structures.The unique features of hybrid nanocomposites,combining CNTs and GPLs,are also analyzed.Furthermore,the study delves into the fabrication and processing techniques of these materials,with a particular focus on strategies to mitigate nanofiller agglomeration.The review extends to cover thermal and electrical properties,durability under environmental exposure,fatigue resistance,and vibration-damping characteristics.In conclusion,the paper underscores the necessity for ongoing advancements in computational modeling to facilitate improved design,analysis,and optimization of nanocomposite structures.Future research opportunities in this rapidly advancing domain are also outlined.展开更多
On January 7,2025,01:05:15 UTC(9:05 a.m.local time)southern Tibet was rocked by a M_(W)7.1 earthquake(M_(W)=moment magnitude,USGS)centered(28.639°N 87.361°E)in the Lhasa Block north of the India/Eurasia Plat...On January 7,2025,01:05:15 UTC(9:05 a.m.local time)southern Tibet was rocked by a M_(W)7.1 earthquake(M_(W)=moment magnitude,USGS)centered(28.639°N 87.361°E)in the Lhasa Block north of the India/Eurasia Plate boundary,in a remote area about 180 km SW of Xigaze,in Dingri County of Shigatse of the Xizang Autonomous Region(Figure 1).展开更多
Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p...Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.展开更多
Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipol...Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
7039 Al alloys are widely used in armor vehicles,given the material’s high specific strength and fracture toughness.However,laminar tearing in the thickness plane of the base metal(BM),specifically in the normal dire...7039 Al alloys are widely used in armor vehicles,given the material’s high specific strength and fracture toughness.However,laminar tearing in the thickness plane of the base metal(BM),specifically in the normal direction(ND)and rolling direction(RD)plane,was occasionally observed after the welding of thick plates,resulting in premature material failure.A vertically metal-inert gas(MIG)-welded laminar tearing component of a 30 mm thick plate was analyzed to determine the factors associated with this phenomenon.The texture,residual stress,microhardness,and tensile properties were also investigated.The results indicated that the crack extended along the RD as a transcrystalline fracture and terminated at the BM.The grains near the crack grew preferentially in the(001)crystal direction.Furthermore,the tensile strength(83 MPa)and elongation(6.8%)in the RD were relatively higher than those in the ND.In particular,the primary factors for crack initiation include stronger texture,higher dislocation density,increased Al_(7)Cu_(2)Fe phases,lower proportion of small-angle grain boundaries,and varying grain sizes in different regions,leading to the fragile microstructure.The higher residual stress of the BM promotes the formation and extension of cracks.The restraining force due to fixation and welding shrinkage force transformed the crack into laminar tearing.Preventive measures of laminar tearing were also proposed.展开更多
This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Div...This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Diverse volume fractions(1%, 2%, and 3%) of Al_(2)O_(3)-water nanofluids are meticulously prepared and analyzed. The essential physical properties of these nanofluids, critical for evaluating their thermal and flow characteristics, have been comprehensively assessed. From a quantitative perspective, numerical simulations are employed to predict the Nusselt number(Nu) and friction factor(f). The empirical findings reveal intriguing trends: the friction factor experiences an upward trend with diminishing velocity, attributed to heightened molecular cohesion. Conversely, the friction factor demonstrates a decline with diminishing volume fractions, a consequence of reduced particle size. Both the nanofluid's viscosity and heat transfer coefficient exhibit a rise in tandem with augmented volume flow rate and concentration gradient. Notably, the simulation results harmonize remarkably well with experimental data. Rigorous validation against prior studies underscores the robust consistency of these outcomes. In the pursuit of augmenting heat transfer, a volume fraction of 3% emerges as particularly influential, yielding an impressive 53.8% enhancement. Minor increments in the friction factor, while present, prove negligible and can be safely overlooked.展开更多
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic...For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.展开更多
This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating tra...This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating transducer in a ring excitation manner.The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis,numerical simulation and experimental methods.The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries.The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate.As the excitation radius increases,the main lobe width of the resulting Bessel-like collimated beam decreases,the extent of the focusing region increases,and the amplitude of the side lobes initially increases and then decreases.Based on the simulation results,a prototype Bessel-like collimated beam generation system is made and measured experimentally.The experimental results are in good agreement with the numerical results.The Bessel-like collimated beam can be generated by the proposed system,which has potential application in the fields of long-range detection,imaging of highly attenuated materials,and airflow acceleration.展开更多
Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerica...Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerical simulations of ice formation on thin flat plates using CFD and FENSAP-ICE,exploring how air temperature,wind velocity,and angle of attack(AOA)affect icing behavior and aerodynamic characteristics.Results indicate that ice thickness increases linearly over time.Rime ice forms at low temperatures due to immediate droplet freezing,whereas glaze ice develops at higher temperatures when a water film forms and subsequently refreezes into protruding ice horns;under identical conditions,rime ice consistently produces thicker ice layers than glaze ice.Increasing wind speed substantially enhances ice growth and coverage,while speeds as low as 1 m/s result in minimal accretion.Changes in AOA shift the icing region toward the pressure side,and AOAs of equal magnitude but opposite sign yield symmetrical ice accretion patterns and identical maximum thickness values.After icing,the plate’s leading edge becomes smoother,slightly reducing drag while increasing lift and moment coefficients.These findings highlight the dominant roles of temperature,wind speed,and AOA in determining ice morphology,extent,and aerodynamic impact,providing valuable insights for predicting icing effects and developing mitigation strategies for structures operating in icing-prone regions.展开更多
How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deform...How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deformation structures in the east Asian continent,however,provide excellent opportunities for reconstructing paleostress fields in continental interior in relation to the Paleo-Pacific/Eurasian plate interaction.Anisotropy of magnetic susceptibility(AMS),geological,and geochronological analyses of post-kinematic mafic dykes intruding the detachment fault zone of the Wulian metamorphic core complex(WL MCC)in Jiaodong Peninsula exemplify emplacement of mantle-sourced dykes in a WNW-ESE(301°-121°)oriented tectonic extensional setting at ca.120 Ma.In combination with the results from our previous kinematic analysis of the MCC,a ca.21°clockwise change in the direction of intraplate extension is obtained for early(135-122 Ma)extensional exhumation of the MCC to late(122-108 Ma)emplacement of the dykes.Such a change is suggested to be related to the variation in subduction direction of the Paleo-Pacific plate beneath the Eurasian plate,from westward(pre-122 Ma)to west-northwestward(post-122 Ma).展开更多
TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosi...TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosion resistance,and interfacial contact resistance of TaN coatings was studied.Results show that as the N_(2) flow rate increases,the roughness of TaN coatings decreases firstly and then increases,and the hydrophobicity increases firstly and then decreases.At the N_(2) flow rate of 3 mL/min,TaN coating with larger grain size presents lower roughness and high hydrophobicity.The coating possesses the lowest corrosion current density of 2.82µA·cm^(−2) and the highest corrosion potential of−0.184 V vs.SCE in the simulated proton exchange membrane water electrolyser environment.After a potentiostatic polarization test for 10 h,a few corrosion pits are observed on the TaN coatings deposited at an N_(2) flow rate of 3 mL/min.After 75 h of electrolytic water performance testing,the TaN coating on bipolar plate improves the corrosion resistance and thus enhances the electrolysis efficiency(68.87%),greatly reducing the cost of bipolar plates.展开更多
A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless emp...A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties.展开更多
High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscop...High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscope,scanning electron microscope,electron backscatter diffraction,and mechanical property testing,and the microstructural features and mechanical properties of the explosive welding interface were explored.The results show that along the direction of explosive welding,the pure nickel N6/steel 45#composite plate interface gradually evolves from a flat bond to a typical wavy bond.The grains at the crests and troughs exhibit high heterogeneity,and the closer to the interface,the finer the grains.Recrystallization and low-stress deformation bands are formed at the bonding interface.Nanoindentation tests reveal that plastic deformation occurs in the interfacial bonding zone,and the nanohardness values in the crest regions are higher than that in the trough regions.The tensile strength of the N6/45#interface is 599.8 MPa,with an average shear strength of 326.3 MPa.No separation phenomenon is observed between N6 and 45#after the bending test.展开更多
Background and Objectives: The distal radius fracture (DRF) is a major public health problem in northern countries. Its frequency is constantly increasing. The locked anterior plate with its well-established biomechan...Background and Objectives: The distal radius fracture (DRF) is a major public health problem in northern countries. Its frequency is constantly increasing. The locked anterior plate with its well-established biomechanical properties, offers a reliable alternative. The aim of this study was to evaluate the radiological, the functional results and to determine the factors of poor postoperative prognosis of DRF treated with Newclip radial plates®. Methodology: This prospective cohort study evaluates the radiological and functional outcames of displaced radius fractures (DRFs) in patients ≥50 years old treated with Newclip® (locked anterior plates) at the Basse-Terre Hospital in Guadeloupe from 2022 to 2024. The patients were categorized into those with epiphyseal involvement (E1 - E4) and without epiphyseal involvement (E0) based on Laulan’s MEU classification. Radiological parameters (distal radio-ulnar index (DRUI), radial inclination frant view (IRF), radial inclination sagittal view (IRS) were assessed pre and post-operatively. Functional recovery was evaluated at 12 months using the QuickDash questionnaire. Results: Falls were the most common cause of fracture. Post-operatively, SRI was the least restored parameter. Poor prognostic factor for SRI improvement included posterior commimution and unstable fractures. Factors associated with higher QuickDash scores included unstable factures, unrestored DRUI, low plate position, metaphyseal features, and ulnar features. Conclusion: The anterior locking plate osteosynthesis is reliable treatment option with excellent functional outcomes.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50104004)
文摘A simple plate crown model was introduced,and the crown-flatness vector analysis method was analyzed.Based on the plate rolling technology,the rolling schedule design of elongation phase is divided into three steps.First step is to calculate the reductions of first pass of elongation making full use of the mill capability to decrease the total pass number.The second step is to calculate the pass reduction for the last three or four passes to control crown and flatness by crown-flatness vector analysis method.In the third step,the maximum rolling force limit and the total pass number are adjusted to make the plate gauge at exit equal to target gauge with satisfactory flatness.The on-line application shows that this method is effective.
文摘An on-line flatness measurement system for steel plate is designed, and that is the flatness meter. The flatness meter is used in the steel plate production line, which is set up on the connecting roller table between each single equipment, such as between quenching machine and straightener, ACC and straightener, shear finishing section, finished product blanking area, etc. when the steel plate passes through the flatness meter detection area, the detection system automatically starts the detection equipment, and carries out real-time data acquisition and detection on the steel plate. The laser line is used to irradiate the steel plate. After the image is collected, the position offset of the laser line is calculated by image processing and pre calibrated pixel accuracy, so as to obtain the thickness information of the steel plate to be measured. The shape of the steel plate is evaluated, and the information such as head warping, tail warping, head bucking, tail bucking, edge wave, ship type and crown are obtained.
基金supported by Tianjin Science and Technology Planning Project(22YDTPJC0020).
文摘As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules.
文摘On February 8,2025,a remote area in the Caribbean Sea was rocked by a large M_(W)7.6(USGS,2025) earthquake,centered 209 km SSW of Georgetown,the capital of the Cayman Islands,and the largest city(population~41 000) of the British Overseas Territories(Figure 1).The earthquake was significant due to its large magnitude,potential regional impact,and the possibility of generating a tsunami.
基金benefited from the financial support of the CAS Pioneer Hundred Talents Program and the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0708)。
文摘Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.
文摘Since the initial observation of carbon nanotubes(CNTs)and graphene platelets(GPLs)in the 1990 and 2000s,the demand for high-performance structural applications and multifunctional materials has driven significant interest in composite structures reinforced with GPLs and CNTs.Incorporating these nanofillers into matrix materials markedly enhances the mechanical properties of the structures.To further improve efficiency and functionality,func-tionally graded(FG)distributions of CNTs and GPLs have been proposed.This study presents an extensive review of computational approaches developed to predict the global behavior of composite structural components enhanced with CNT and GPL nanofillers.The analysis focuses on key structural elements,such as plate-type configurations,cylindrical and curved shells,and beams,emphasizing the computational techniques utilized to simulate their mechanical behavior.The utilization of three-dimensional elasticity theories and equivalent single-layer(ESL)frameworks,which are widely employed in the modeling and analysis of these composites,is comprehensively discussed.Additionally,the paper examines various mechanical performance aspects,including static,buckling,post-buckling,vibrational,and dynamic responses for the mentioned structures.The unique features of hybrid nanocomposites,combining CNTs and GPLs,are also analyzed.Furthermore,the study delves into the fabrication and processing techniques of these materials,with a particular focus on strategies to mitigate nanofiller agglomeration.The review extends to cover thermal and electrical properties,durability under environmental exposure,fatigue resistance,and vibration-damping characteristics.In conclusion,the paper underscores the necessity for ongoing advancements in computational modeling to facilitate improved design,analysis,and optimization of nanocomposite structures.Future research opportunities in this rapidly advancing domain are also outlined.
文摘On January 7,2025,01:05:15 UTC(9:05 a.m.local time)southern Tibet was rocked by a M_(W)7.1 earthquake(M_(W)=moment magnitude,USGS)centered(28.639°N 87.361°E)in the Lhasa Block north of the India/Eurasia Plate boundary,in a remote area about 180 km SW of Xigaze,in Dingri County of Shigatse of the Xizang Autonomous Region(Figure 1).
基金Key R&D Plan of Shaanxi Province(2021LLRH-05-09)Shaanxi Province Youth Talent Support Program Project(CLGC202234)Sponsored by Innovative Pilot Platform for Layered Metal Composite Materials(2024CX-GXPT-20)。
文摘Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.
基金supported by the National Key Re-search and Development Program of China(No.2022YFB4002100)the National Natural Science Foundation of China(No.52271136)the Natural Science Foundation of Shaanxi Province(Nos.2019TD-020 and 2021JC-06).
文摘Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金supported by the National Key Research and Development Program of China(No.SQ2021YFF 0600011).
文摘7039 Al alloys are widely used in armor vehicles,given the material’s high specific strength and fracture toughness.However,laminar tearing in the thickness plane of the base metal(BM),specifically in the normal direction(ND)and rolling direction(RD)plane,was occasionally observed after the welding of thick plates,resulting in premature material failure.A vertically metal-inert gas(MIG)-welded laminar tearing component of a 30 mm thick plate was analyzed to determine the factors associated with this phenomenon.The texture,residual stress,microhardness,and tensile properties were also investigated.The results indicated that the crack extended along the RD as a transcrystalline fracture and terminated at the BM.The grains near the crack grew preferentially in the(001)crystal direction.Furthermore,the tensile strength(83 MPa)and elongation(6.8%)in the RD were relatively higher than those in the ND.In particular,the primary factors for crack initiation include stronger texture,higher dislocation density,increased Al_(7)Cu_(2)Fe phases,lower proportion of small-angle grain boundaries,and varying grain sizes in different regions,leading to the fragile microstructure.The higher residual stress of the BM promotes the formation and extension of cracks.The restraining force due to fixation and welding shrinkage force transformed the crack into laminar tearing.Preventive measures of laminar tearing were also proposed.
文摘This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Diverse volume fractions(1%, 2%, and 3%) of Al_(2)O_(3)-water nanofluids are meticulously prepared and analyzed. The essential physical properties of these nanofluids, critical for evaluating their thermal and flow characteristics, have been comprehensively assessed. From a quantitative perspective, numerical simulations are employed to predict the Nusselt number(Nu) and friction factor(f). The empirical findings reveal intriguing trends: the friction factor experiences an upward trend with diminishing velocity, attributed to heightened molecular cohesion. Conversely, the friction factor demonstrates a decline with diminishing volume fractions, a consequence of reduced particle size. Both the nanofluid's viscosity and heat transfer coefficient exhibit a rise in tandem with augmented volume flow rate and concentration gradient. Notably, the simulation results harmonize remarkably well with experimental data. Rigorous validation against prior studies underscores the robust consistency of these outcomes. In the pursuit of augmenting heat transfer, a volume fraction of 3% emerges as particularly influential, yielding an impressive 53.8% enhancement. Minor increments in the friction factor, while present, prove negligible and can be safely overlooked.
文摘For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.
基金Project supported by the National Natural Science Foundation of China(Grant No.12474440).
文摘This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating transducer in a ring excitation manner.The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis,numerical simulation and experimental methods.The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries.The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate.As the excitation radius increases,the main lobe width of the resulting Bessel-like collimated beam decreases,the extent of the focusing region increases,and the amplitude of the side lobes initially increases and then decreases.Based on the simulation results,a prototype Bessel-like collimated beam generation system is made and measured experimentally.The experimental results are in good agreement with the numerical results.The Bessel-like collimated beam can be generated by the proposed system,which has potential application in the fields of long-range detection,imaging of highly attenuated materials,and airflow acceleration.
基金supported by the National Natural Science Foundation of China(52278532)Sichuan Science and Technology Program(2024NSFSC0153)。
文摘Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerical simulations of ice formation on thin flat plates using CFD and FENSAP-ICE,exploring how air temperature,wind velocity,and angle of attack(AOA)affect icing behavior and aerodynamic characteristics.Results indicate that ice thickness increases linearly over time.Rime ice forms at low temperatures due to immediate droplet freezing,whereas glaze ice develops at higher temperatures when a water film forms and subsequently refreezes into protruding ice horns;under identical conditions,rime ice consistently produces thicker ice layers than glaze ice.Increasing wind speed substantially enhances ice growth and coverage,while speeds as low as 1 m/s result in minimal accretion.Changes in AOA shift the icing region toward the pressure side,and AOAs of equal magnitude but opposite sign yield symmetrical ice accretion patterns and identical maximum thickness values.After icing,the plate’s leading edge becomes smoother,slightly reducing drag while increasing lift and moment coefficients.These findings highlight the dominant roles of temperature,wind speed,and AOA in determining ice morphology,extent,and aerodynamic impact,providing valuable insights for predicting icing effects and developing mitigation strategies for structures operating in icing-prone regions.
基金supported by the National Natural Science Foundation of China(Grant Nos:42130801,41430211,90814006,and 42072226)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,CUGB(Fundamental Research Funds for the Central UniversitiesGrant No:2652023001).
文摘How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deformation structures in the east Asian continent,however,provide excellent opportunities for reconstructing paleostress fields in continental interior in relation to the Paleo-Pacific/Eurasian plate interaction.Anisotropy of magnetic susceptibility(AMS),geological,and geochronological analyses of post-kinematic mafic dykes intruding the detachment fault zone of the Wulian metamorphic core complex(WL MCC)in Jiaodong Peninsula exemplify emplacement of mantle-sourced dykes in a WNW-ESE(301°-121°)oriented tectonic extensional setting at ca.120 Ma.In combination with the results from our previous kinematic analysis of the MCC,a ca.21°clockwise change in the direction of intraplate extension is obtained for early(135-122 Ma)extensional exhumation of the MCC to late(122-108 Ma)emplacement of the dykes.Such a change is suggested to be related to the variation in subduction direction of the Paleo-Pacific plate beneath the Eurasian plate,from westward(pre-122 Ma)to west-northwestward(post-122 Ma).
基金National Key Research and Development Program of China(2022YFB4002100)National Natural Science Foundation of China(52271136)Natural Science Foundation of Shaanxi Province(2021JC-06)。
文摘TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosion resistance,and interfacial contact resistance of TaN coatings was studied.Results show that as the N_(2) flow rate increases,the roughness of TaN coatings decreases firstly and then increases,and the hydrophobicity increases firstly and then decreases.At the N_(2) flow rate of 3 mL/min,TaN coating with larger grain size presents lower roughness and high hydrophobicity.The coating possesses the lowest corrosion current density of 2.82µA·cm^(−2) and the highest corrosion potential of−0.184 V vs.SCE in the simulated proton exchange membrane water electrolyser environment.After a potentiostatic polarization test for 10 h,a few corrosion pits are observed on the TaN coatings deposited at an N_(2) flow rate of 3 mL/min.After 75 h of electrolytic water performance testing,the TaN coating on bipolar plate improves the corrosion resistance and thus enhances the electrolysis efficiency(68.87%),greatly reducing the cost of bipolar plates.
文摘A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties.
基金Natural Science Foundation of Shanxi Province(202203021221149)Key Research and Development Program of Shanxi Province(202302010101006,202202150401016)+1 种基金Scientific Research Start-up Fund for the Introduction of Talents in Shanxi Institute of Electronic Science and Technology(2023RKJ021)Key R&D Program of Linfen City(2334)。
文摘High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscope,scanning electron microscope,electron backscatter diffraction,and mechanical property testing,and the microstructural features and mechanical properties of the explosive welding interface were explored.The results show that along the direction of explosive welding,the pure nickel N6/steel 45#composite plate interface gradually evolves from a flat bond to a typical wavy bond.The grains at the crests and troughs exhibit high heterogeneity,and the closer to the interface,the finer the grains.Recrystallization and low-stress deformation bands are formed at the bonding interface.Nanoindentation tests reveal that plastic deformation occurs in the interfacial bonding zone,and the nanohardness values in the crest regions are higher than that in the trough regions.The tensile strength of the N6/45#interface is 599.8 MPa,with an average shear strength of 326.3 MPa.No separation phenomenon is observed between N6 and 45#after the bending test.
文摘Background and Objectives: The distal radius fracture (DRF) is a major public health problem in northern countries. Its frequency is constantly increasing. The locked anterior plate with its well-established biomechanical properties, offers a reliable alternative. The aim of this study was to evaluate the radiological, the functional results and to determine the factors of poor postoperative prognosis of DRF treated with Newclip radial plates®. Methodology: This prospective cohort study evaluates the radiological and functional outcames of displaced radius fractures (DRFs) in patients ≥50 years old treated with Newclip® (locked anterior plates) at the Basse-Terre Hospital in Guadeloupe from 2022 to 2024. The patients were categorized into those with epiphyseal involvement (E1 - E4) and without epiphyseal involvement (E0) based on Laulan’s MEU classification. Radiological parameters (distal radio-ulnar index (DRUI), radial inclination frant view (IRF), radial inclination sagittal view (IRS) were assessed pre and post-operatively. Functional recovery was evaluated at 12 months using the QuickDash questionnaire. Results: Falls were the most common cause of fracture. Post-operatively, SRI was the least restored parameter. Poor prognostic factor for SRI improvement included posterior commimution and unstable fractures. Factors associated with higher QuickDash scores included unstable factures, unrestored DRUI, low plate position, metaphyseal features, and ulnar features. Conclusion: The anterior locking plate osteosynthesis is reliable treatment option with excellent functional outcomes.