The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and res...The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.展开更多
Objective:To evaluate incidence of interscalar excursions between round window (RW) and cochleostomy approaches for cochlear implant (CI) insertion. Methods:This was a retrospective case-comparison. Flat-panel CT (FPC...Objective:To evaluate incidence of interscalar excursions between round window (RW) and cochleostomy approaches for cochlear implant (CI) insertion. Methods:This was a retrospective case-comparison. Flat-panel CT (FPCT) scans for 8 CI users with Med-El standard length electrode arrays were collected. Surgical technique was identified by a combination of operative notes and FPCT imaging. Four cochleae underwent round win-dow insertion and 4 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Results:In our pilot study, cochleostomy approaches were associated with a higher likeli-hood of interscalar excursion. Within the cochleostomy group, we found 29% of electrode contacts (14 of 48 electrodes) to be outside the scala tympani. On the other hand, 8.5%of the electrode contacts (4 of 47 electrodes) in the round window insertion group were extra-scalar to the scala tympani. These displacements occurred at a mean angle of occur-rence of 364°±133°, near the apex of the cochlea. Round window electrode displacements tend to localize at angle of occurrences of 400? or greater. Cochleostomy electrodes occurred at an angle of occurrence of 19°e490°.展开更多
Flat-panel X-ray sources(FPXSs)have many advantages in terms of compactness and low-dose imaging,enhancing their capability for novel X-ray applications.Experimental analysis of the X-ray characteristics and optimizin...Flat-panel X-ray sources(FPXSs)have many advantages in terms of compactness and low-dose imaging,enhancing their capability for novel X-ray applications.Experimental analysis of the X-ray characteristics and optimizing the anode panel of an FPXS are time-consuming,expensive,and sometimes impractical.In this study,a FPXS was prepared using a ZnO nanowire cold cathode and a molybdenum film anode target.Monte Carlo(MC)simulations were utilized to optimize the anode panel and obtain the average fluence,average energy,and spatial distribution of the X-rays for the ZnO nanowire FPXS.The accuracy of the MC simulations was verified by comparing the measured and simulated energy spectra.Optimization of the anode target considers the material,thickness,and morphology,whereas optimization of the substrate focuses on the material and thickness.The results show that the difference between the positions of the K-shell peaks in the measured and simulated energy spectra is within 0.26 keV.At the acceleration voltages of 30 kV,60 kV,and 90 kV,the optimal thicknesses of the tungsten array anode were 0.65μm,2.45μm,and 5μm,respectively,while the molybdenum array anode has the optimal thicknesses of 1.45μm,5.25μm,and 24μm,respectively.The microsemi-ellipsoidal anode with a recessed design showed a 5%increase in the transmitted X-ray fluence compared with the film target.The sapphire substrate with a thickness of 0.78 mm exhibits a mechanical strength comparable to that of a glass substrate with a thickness of 3 mm,implying that the former can increase the average X-ray fluence by reducing the filtration of X-rays.The findings of this study provide valuable guidance for the fabrication and optimization of the ZnO nanowire FPXS.展开更多
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur...In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images展开更多
文摘The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.
文摘Objective:To evaluate incidence of interscalar excursions between round window (RW) and cochleostomy approaches for cochlear implant (CI) insertion. Methods:This was a retrospective case-comparison. Flat-panel CT (FPCT) scans for 8 CI users with Med-El standard length electrode arrays were collected. Surgical technique was identified by a combination of operative notes and FPCT imaging. Four cochleae underwent round win-dow insertion and 4 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Results:In our pilot study, cochleostomy approaches were associated with a higher likeli-hood of interscalar excursion. Within the cochleostomy group, we found 29% of electrode contacts (14 of 48 electrodes) to be outside the scala tympani. On the other hand, 8.5%of the electrode contacts (4 of 47 electrodes) in the round window insertion group were extra-scalar to the scala tympani. These displacements occurred at a mean angle of occur-rence of 364°±133°, near the apex of the cochlea. Round window electrode displacements tend to localize at angle of occurrences of 400? or greater. Cochleostomy electrodes occurred at an angle of occurrence of 19°e490°.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1204203 and 2022YFA1204201)Opening Fund of the State Key Laboratory of Optoelectronic Materials and Technologies at Sun Yat-sen University(No.OEMT-2023-KF-01)+1 种基金National Natural Science Foundation of China(Nos.61971463,82272131,and 82202960)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010537).
文摘Flat-panel X-ray sources(FPXSs)have many advantages in terms of compactness and low-dose imaging,enhancing their capability for novel X-ray applications.Experimental analysis of the X-ray characteristics and optimizing the anode panel of an FPXS are time-consuming,expensive,and sometimes impractical.In this study,a FPXS was prepared using a ZnO nanowire cold cathode and a molybdenum film anode target.Monte Carlo(MC)simulations were utilized to optimize the anode panel and obtain the average fluence,average energy,and spatial distribution of the X-rays for the ZnO nanowire FPXS.The accuracy of the MC simulations was verified by comparing the measured and simulated energy spectra.Optimization of the anode target considers the material,thickness,and morphology,whereas optimization of the substrate focuses on the material and thickness.The results show that the difference between the positions of the K-shell peaks in the measured and simulated energy spectra is within 0.26 keV.At the acceleration voltages of 30 kV,60 kV,and 90 kV,the optimal thicknesses of the tungsten array anode were 0.65μm,2.45μm,and 5μm,respectively,while the molybdenum array anode has the optimal thicknesses of 1.45μm,5.25μm,and 24μm,respectively.The microsemi-ellipsoidal anode with a recessed design showed a 5%increase in the transmitted X-ray fluence compared with the film target.The sapphire substrate with a thickness of 0.78 mm exhibits a mechanical strength comparable to that of a glass substrate with a thickness of 3 mm,implying that the former can increase the average X-ray fluence by reducing the filtration of X-rays.The findings of this study provide valuable guidance for the fabrication and optimization of the ZnO nanowire FPXS.
基金Supported by the National Basic Research Program of China ("973"Program)(2006CB601201)~~
文摘In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images