A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless emp...A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties.展开更多
It has been experimentally observed that,in the perforation of metal plates by a flat-nosed projectile,there exists a plateau phenomenon where the ballistic limit increases slightly with increasing plate thickness,whi...It has been experimentally observed that,in the perforation of metal plates by a flat-nosed projectile,there exists a plateau phenomenon where the ballistic limit increases slightly with increasing plate thickness,which is related to a change in the mode of failure.No theoretical model has so far explained this phenomenon satisfactorily.This paper presents a combined numerical and theoretical study on the perforation of 2024-T351 aluminum plates struck by flat-nosed projectiles.First,numerical simulations are performed to investigate the failure mechanisms/deformation modes of the aluminum plates.Then,a theoretical model is proposed based on the numerical results and the experimental observations within a unified framework.The model takes into account the main energy absorbing mechanisms and the corresponding energies absorbed are determined analytically.In particular,a dimensionless equation is suggested to describe the relationship between global deformations and impact velocity.It transpires that the model predictions are in good agreement with the test data and the numerical results for the perforation of 2024-T351 aluminum plates struck by rigid flat-nosed projectiles in terms of residual velocity,ballistic limit,relationship between global deformations and impact velocity,and transition of failure modes.It also transpires that the present model can predict the“plateau”phenomenon,which shows a slight increase in ballistic limit as plate thickness increases.Furthermore,the energy absorption mechanisms are discussed on the basis of the theoretical analysis.展开更多
文摘A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties.
文摘It has been experimentally observed that,in the perforation of metal plates by a flat-nosed projectile,there exists a plateau phenomenon where the ballistic limit increases slightly with increasing plate thickness,which is related to a change in the mode of failure.No theoretical model has so far explained this phenomenon satisfactorily.This paper presents a combined numerical and theoretical study on the perforation of 2024-T351 aluminum plates struck by flat-nosed projectiles.First,numerical simulations are performed to investigate the failure mechanisms/deformation modes of the aluminum plates.Then,a theoretical model is proposed based on the numerical results and the experimental observations within a unified framework.The model takes into account the main energy absorbing mechanisms and the corresponding energies absorbed are determined analytically.In particular,a dimensionless equation is suggested to describe the relationship between global deformations and impact velocity.It transpires that the model predictions are in good agreement with the test data and the numerical results for the perforation of 2024-T351 aluminum plates struck by rigid flat-nosed projectiles in terms of residual velocity,ballistic limit,relationship between global deformations and impact velocity,and transition of failure modes.It also transpires that the present model can predict the“plateau”phenomenon,which shows a slight increase in ballistic limit as plate thickness increases.Furthermore,the energy absorption mechanisms are discussed on the basis of the theoretical analysis.