This work is devoted to the study of plasma channel evolution characteristics in pulsed xenon flashlamps working in an array. Influencing factors on the plasma channel evolution process are studied, including pre-ioni...This work is devoted to the study of plasma channel evolution characteristics in pulsed xenon flashlamps working in an array. Influencing factors on the plasma channel evolution process are studied, including pre-ionization pulse and neighbor fiashlamps. It has been found that neighbor flaShlamps affect the plasma channel by shaping the electric potential distribution, rather than by Lorentz force. Branching is observed in the plasma channels of the flashlamps in the middle of the array. Inconsistency also exists in the plasma channels of these flashlamps in different tests. The branching and inconsistency are both caused by the unique electric field distribution in these flashlamps. Besides, the pre-ionization pulse can help the main pulse plasma channel to develop more smoothly and faster, which will weaken the shock wave and benefit the mechanical strength of the flashlamp.展开更多
The influence of temperature and input energy on the fluorescence emission cross section of Nd3+ :YAG crystal is studied. The stimulated emission cross sections of quasi-three-level systems are determined in a tempe...The influence of temperature and input energy on the fluorescence emission cross section of Nd3+ :YAG crystal is studied. The stimulated emission cross sections of quasi-three-level systems are determined in a temperature range from -30 to 60 ℃ and an input energy range from 18 to 75 J. The cross section is found to be decreased when the temperature and the input energy are increased. This is attributed to the thermal broadening mechanism of the emission line. This study is relevant for the development of laser design.展开更多
This work is devoted to experimentally study the characteristics of discharge plasma in high power xenon flashlamps.In the experiments,plasma channel profiles are captured by using a high speed CCD camera,and the radi...This work is devoted to experimentally study the characteristics of discharge plasma in high power xenon flashlamps.In the experiments,plasma channel profiles are captured by using a high speed CCD camera,and the radiation energy of the flashlamp is obtained by a pyroelectric energy meter.Voltage and current curves are recorded to shed light on the plasma characteristics.With these diagnostic methods,typical factors influencing the evolution process of plasma channel are studied,including the external electric field and the pre-ionization.The electric potential distribution in the flashlamp influence the plasma channel characteristics the most significantly.The plasma channel pattern for the cases with grounded wires is different from that with ungrounded metal wires.When the wire is ungrounded,it is the coupling voltage between the metal wire and the flashlamp that influences the development of plasma channel.In terms of radiation efficiency,it is proven that there is an optimal interval within 200~300μs between the pre-ionization pulse and the main pulse.展开更多
文摘This work is devoted to the study of plasma channel evolution characteristics in pulsed xenon flashlamps working in an array. Influencing factors on the plasma channel evolution process are studied, including pre-ionization pulse and neighbor fiashlamps. It has been found that neighbor flaShlamps affect the plasma channel by shaping the electric potential distribution, rather than by Lorentz force. Branching is observed in the plasma channels of the flashlamps in the middle of the array. Inconsistency also exists in the plasma channels of these flashlamps in different tests. The branching and inconsistency are both caused by the unique electric field distribution in these flashlamps. Besides, the pre-ionization pulse can help the main pulse plasma channel to develop more smoothly and faster, which will weaken the shock wave and benefit the mechanical strength of the flashlamp.
基金Project supported by the Higher Education of Malaysia (Grant No. 7126.00H10)the International Development Fund
文摘The influence of temperature and input energy on the fluorescence emission cross section of Nd3+ :YAG crystal is studied. The stimulated emission cross sections of quasi-three-level systems are determined in a temperature range from -30 to 60 ℃ and an input energy range from 18 to 75 J. The cross section is found to be decreased when the temperature and the input energy are increased. This is attributed to the thermal broadening mechanism of the emission line. This study is relevant for the development of laser design.
文摘This work is devoted to experimentally study the characteristics of discharge plasma in high power xenon flashlamps.In the experiments,plasma channel profiles are captured by using a high speed CCD camera,and the radiation energy of the flashlamp is obtained by a pyroelectric energy meter.Voltage and current curves are recorded to shed light on the plasma characteristics.With these diagnostic methods,typical factors influencing the evolution process of plasma channel are studied,including the external electric field and the pre-ionization.The electric potential distribution in the flashlamp influence the plasma channel characteristics the most significantly.The plasma channel pattern for the cases with grounded wires is different from that with ungrounded metal wires.When the wire is ungrounded,it is the coupling voltage between the metal wire and the flashlamp that influences the development of plasma channel.In terms of radiation efficiency,it is proven that there is an optimal interval within 200~300μs between the pre-ionization pulse and the main pulse.