Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings ...In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.展开更多
We investigate high-frequency traders’behavior in the context of the fastest and most extreme price movements(EPMs)that can be observed in the market,specifically ultrafast flash events,challenging the methodologies ...We investigate high-frequency traders’behavior in the context of the fastest and most extreme price movements(EPMs)that can be observed in the market,specifically ultrafast flash events,challenging the methodologies employed in the academic and practitioner literature for identifying sudden liquidity black holes.To refine the price-shock identification methodology,we introduce a new approach called sequence-based flash events(SFEs),which relies on tick sequences instead of predetermined fixed-time intervals within which all flash events in the sample are assumed to occur.This alternative methodology offers the advantage of pinpointing the exact time and duration of a crash,which,in turn,provides a way to more accurately define the observation windows around it.We compare our sample of SFEs with both the so-called“mini flash crashes”,as identified by the Nanex detection algorithm,and the so-called EPMs,as identified by Brogaard et al.(2018).We use close and open prices,as well as high and low prices.Based on our sample of SFEs,we find no evidence that HFTs trigger extreme price shocks.However,we find that HFTs exacerbate SFEs by increasing the net imbalance in the direction of these shocks as they occur.Finally,we show that the choice of the price-shock identification methodology is critical.Thus,we urge regulators to exercise caution and avoid hasty conclusions regarding HFTs’contribution to price stability in stressful market conditions.展开更多
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金support of the PID2021-124341OB-C22/AEI/10.13039/501100011033/FEDER,UE(MICIU)J.M.Vega also acknowledges the Grant RYC2021-034384-I funded by MICIU/AEI/10.13039/501100011033 and by“European Union Next Generation EU/PRTR”.
文摘In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.
文摘We investigate high-frequency traders’behavior in the context of the fastest and most extreme price movements(EPMs)that can be observed in the market,specifically ultrafast flash events,challenging the methodologies employed in the academic and practitioner literature for identifying sudden liquidity black holes.To refine the price-shock identification methodology,we introduce a new approach called sequence-based flash events(SFEs),which relies on tick sequences instead of predetermined fixed-time intervals within which all flash events in the sample are assumed to occur.This alternative methodology offers the advantage of pinpointing the exact time and duration of a crash,which,in turn,provides a way to more accurately define the observation windows around it.We compare our sample of SFEs with both the so-called“mini flash crashes”,as identified by the Nanex detection algorithm,and the so-called EPMs,as identified by Brogaard et al.(2018).We use close and open prices,as well as high and low prices.Based on our sample of SFEs,we find no evidence that HFTs trigger extreme price shocks.However,we find that HFTs exacerbate SFEs by increasing the net imbalance in the direction of these shocks as they occur.Finally,we show that the choice of the price-shock identification methodology is critical.Thus,we urge regulators to exercise caution and avoid hasty conclusions regarding HFTs’contribution to price stability in stressful market conditions.