期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamic performance and wake structure of flapping plates with different shapes 被引量:3
1
作者 Gao-Jin Li Nan-Sheng Liu Xi-Yun Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期800-808,共9页
The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are iden... The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are identified.One is nonlinear relation between the thrust and the area moment of plate for lower area moment region and the other is linear relation for larger area moment region.The tendency of the power variation with the area moment is reasonably similar to the thrust behavior and the efficiency decreases gradually as the area moment increases.As the mechanism of the dynamic properties is associated with the evolution of vortical structures around the plate,the formation and evolution of vortical structures are investigated and the effects of the plate shape,plate area,Strouhal number and Reynolds number on the vortical structures are analyzed.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to flapping locomotion. 展开更多
关键词 dynamics of flapping plate flapping locomotion Plate shape Vortex dynamics
在线阅读 下载PDF
The effect of phase angle and wing spacing on tandem flapping wings 被引量:15
2
作者 Timothy M. Broering Yong-Sheng Lian 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1557-1571,共15页
In a tandem wing configuration, the hindwing of- ten operates in the wake of the forewing and, hence, its per- formance is affected by the vortices shed by the forewing. Changes in the phase angle between the flapping... In a tandem wing configuration, the hindwing of- ten operates in the wake of the forewing and, hence, its per- formance is affected by the vortices shed by the forewing. Changes in the phase angle between the flapping motions of the fore and the hind wings, as well as the spacing between them, can affect the resulting vortex/wing and vortex/vortex interactions. This study uses 2D numerical simulations to in- vestigate how these changes affect the leading dege vortexes (LEV) generated by the hindwing and the resulting effect on the lift and thrust coefficients as well as the efficiencies. The tandem wing configuration was simulated using an incom- pressible Navier-Stokes solver at a chord-based Reynolds number of 5 000. A harmonic single frequency sinusoidal oscillation consisting of a combined pitch and plunge motion was used for the flapping wing kinematics at a Strouhal num- ber of 0.3. Four different spacings ranging from 0.1 chords to 1 chord were tested at three different phase angles, 0°, 90° and 180°. It was found that changes in the spacing and phase angle affected the timing of the interaction between the vor- tex shed from the forewing and the hindwing. Such an inter- action affects the LEV formation on the hindwing and results in changes in aerodynamic force production and efficiencies of the hindwing. It is also observed that changing the phase angle has a similar effect as changing the spacing. The re- suits further show that at different spacings the peak force generation occurs at different phase angles, as do the peak efficiencies. 展开更多
关键词 Tandem. flapping. Airfoils. Micro air vehicle.Caculational fluid dynamics (CFD) Overlapping grids
在线阅读 下载PDF
Real-time monitoring of tumor vascular disruption induced by radiofrequency assisted gadofullerene 被引量:5
3
作者 Ruijun Deng Yuqing Wang +9 位作者 Mingming Zhen Xue Li Toujun ZOU Jie Li Tong Yu Yue Zhou Zhigao Lu Hui Xu Chunying Shu Chunru Wang 《Science China Materials》 SCIE EI CSCD 2018年第8期1101-1111,共11页
The anti-vascular therapy has been extensively studied for high performance tumor therapy by suppressing the tumor angiogenesis or cutting off the existing tumor vasculature. We have previously reported a novel anti-t... The anti-vascular therapy has been extensively studied for high performance tumor therapy by suppressing the tumor angiogenesis or cutting off the existing tumor vasculature. We have previously reported a novel anti-tumor treatment technique using radiofrequency (RF)-assisted ga- dofullerene nanocrystals (GFNCs) to selectively disrupt the tumor vasculature. In this work, we further revealed the changes on morphology and functionality of the tumor vas-culature during the high-performance RF-assisted GFNCs treatment in vivo. Here, a dearly evident mechanism of this technique in tumor vascular disruption was elucidated. Based on the H22 tumor bearing mice with dorsal skin flap chamber (DSFC) mode] and the dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) technique, it was revealed that the GFNCs would selectively inset in the gaps of tumor vas-culature due to the innately incomplete structures and unique microenvironment of tumor vasculature,' and they damaged the surrounding endothelia cells excited by the RF to induce a phase transition accompanying with size expansion. Soon afterwards, the blood flow of the tumor blood vessels was permanently shut off, causing the entire tumor vascular net- work to collapse within 24 h after the treatment. The RF-as- sistant GFNCs technique was proved to aim at the tumor vasculatnre precisely, and was harmless to the normal vascu- lature. The current studies provide a rational explanation on the high efficiency anticancer activity of the RF-assisted GFNCs treatment, suggesting a novel technique with potent clinical application. 展开更多
关键词 gadofullerene radiofrequency dorsal skin flap chamber dynamic contrast enhanced magnetic resonance imaging tumor vasculaturegadofullerene RADIOFREQUENCY dorsal skin flap chamber dynamic contrast enhanced magnetic resonance imaging tumor vasculature
原文传递
Quantification of wing and body kinematics in connection to torque generation during damselfly yaw turn
4
作者 Samane Zeyghami Ayodeji T. Bode-Oke HaiBo Dong 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第1期32-41,共10页
This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn fights. The yaw turn is characterized by a short acceleration phase which is immedia... This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn fights. The yaw turn is characterized by a short acceleration phase which is immediately followed by an elongated deceleration phase. Most of the heading change takes place during the latter stage of the flight. Our observations showed that yaw turns are executed via drastic rather than subtle changes in the kinematics of all four wings. The motion of the inner and outer wings were found to be strongly linked through their orientation as well as their velocities with the inner wings moving faster than the outer wings. By controlling the pitch angle and wing velocity, a damselfly adjusts the angle of attack. The wing angle of attack exerted the strongest influence on the yaw torque, followed by the flapping and deviation velocities of the wings. Moreover, no evidence of active generation of counter torque was found in the flight data implying that deceleration and stopping of the maneuver is dominated by passive damping. The systematic analysis carried out on the free flight data advances our understanding of the mechanisms by which these insects achieve their observed maneuverability. In addition, the inspiration drawn from this study can be employed in the design of low frequency flapping wing micro air vehicles (MAV's). 展开更多
关键词 DAMSELFLY yaw turn angle of attack low flapping frequency wing kinematics flapping flight dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部