Ti3C2Tx,a most studied member of MXene family,shows promise as a candidate electrode for pseudocapacitor due to its electronic conductivity and hydrophilic surface.However,the unsatisfactory yield of Ti3C2Tx few-layer...Ti3C2Tx,a most studied member of MXene family,shows promise as a candidate electrode for pseudocapacitor due to its electronic conductivity and hydrophilic surface.However,the unsatisfactory yield of Ti3C2Tx few-layer flakes significantly restricted it in real applications.Here,we proposed a simple solution to boost the yield of Ti3C2Tx few-layer flakes by decreasing precursor size.When using the small500 mesh Ti3AlC2 powders as raw material,high yield of 65%was successfully achieved.Moreover,the asreceived small flakes also exhibit an enhanced pseudocapacior performance owing to their excellent electrical conductivity,expanded inte rlayer space and more O content on the surface.This work not only sheds light on the cost effective mass production of Ti3C2Tx few-layer flakes,but also provides an efficient solution for the design of MXene electrodes with high pseudocapacior performance.展开更多
基金the National Natural Science Foundation of China(No.21671167)the Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No.JH201847)the National Natural Science Foundation of China(No.51602277)。
文摘Ti3C2Tx,a most studied member of MXene family,shows promise as a candidate electrode for pseudocapacitor due to its electronic conductivity and hydrophilic surface.However,the unsatisfactory yield of Ti3C2Tx few-layer flakes significantly restricted it in real applications.Here,we proposed a simple solution to boost the yield of Ti3C2Tx few-layer flakes by decreasing precursor size.When using the small500 mesh Ti3AlC2 powders as raw material,high yield of 65%was successfully achieved.Moreover,the asreceived small flakes also exhibit an enhanced pseudocapacior performance owing to their excellent electrical conductivity,expanded inte rlayer space and more O content on the surface.This work not only sheds light on the cost effective mass production of Ti3C2Tx few-layer flakes,but also provides an efficient solution for the design of MXene electrodes with high pseudocapacior performance.