This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically diffic...Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically difficult.Here,we show that ellipsoidal Quincke roller propelled along their short-axis(perpendicular to the long axis)can align their velocities by flipping and form flocking with nematic order.The flipping arises from the reversible transition between the static parallel spinless state and the spinning transversal state of ellipsoidal Quincke rollers.This is possible only near(above)the critical field where both the parallel spinless state and the spinning transversal spinning are metastable.The flipping-facilitated alignment offers an extra aligning mechanism for elongate active agents,and the resulting active liquid crystals serve a model system to explore the defect dynamics as the propulsion deviates from the local nematic orientation which has not been addressed yet.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track pred...Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios.展开更多
This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and lo...This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.展开更多
In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabili...In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.展开更多
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
Multiple mobile agents with double integrator dynamics, following a leader to achieve a flocking motion formation, are studied in this paper. A class of local control laws for a group of mobile agents is proposed. Fro...Multiple mobile agents with double integrator dynamics, following a leader to achieve a flocking motion formation, are studied in this paper. A class of local control laws for a group of mobile agents is proposed. From a theoretical proof, the following conclusions are reached: (i) agents globally align their velocity vectors with a leader, (ii) they converge their velocities to the leaders velocity, (iii) collisions among interconnected agents are avoided, and (iv) agent's artificial potential functions are minimized. We model the interaction and/or communication relationship between agents by algebraic graph theory. Stability analysis is achieved by using classical Lyapunov theory in a fixed network topology, and differential inclusions and nonsmooth analysis in a switching network topology respectively. Simulation examples are provided.展开更多
This paper addresses the fixed-time adaptive model reference sliding mode control for an air-to-ground missile associated with large speed ranges, mismatched disturbances and un-modeled dynamics. Firstly, a sliding mo...This paper addresses the fixed-time adaptive model reference sliding mode control for an air-to-ground missile associated with large speed ranges, mismatched disturbances and un-modeled dynamics. Firstly, a sliding mode surface is developed by the tracking error of the state equation and the model reference state equation with respect to the air-to-ground missile. More specifically,a novel fixed-time adaptive reaching law is presented. Subsequently, the mismatched disturbances and the un-modeled dynamics are treated as the model errors of the state equation. These model errors are estimated by means of a fixed-time disturbance observer, and they are also utilized to compensate the proposed controller. Therefore, the fixed-time controller is obtained by an adaptive reaching law and a fixed-time disturbance observer. Closed-loop stability of the proposed controller is established. Finally, simulation results including Monte Carlo simulations, nonlinear six-DegreeOf-Freedom(6-DOF) simulations and different ranges are presented to demonstrate the efficacy of the proposed control scheme.展开更多
We consider the problem of controlling a group of mobile agents to form a designated formation while flocking within a constrained environment. We first propose a potential field based method to drive the agents to mo...We consider the problem of controlling a group of mobile agents to form a designated formation while flocking within a constrained environment. We first propose a potential field based method to drive the agents to move in connection with their neighbors, and regulate their relative positions to achieve the specific formation. The communication topology is preserved during the motion. We then extend the method to flocking with environmental constraints. Stability properties are analyzed to guarantee that all agents eventually form the desired formation while flocking, and flock safely without collision with the environment boundary. We verify our algorithm through simulations on a group of agents performing maximum coverage flocking and traveling through an unknown constrained environment.展开更多
This paper considers a multiple unmanned aerial vehicles (UAV) formation problem and proposes a new method inspired by bird flocking and foraging behavior. A bidirectional communication network, a navigator based on...This paper considers a multiple unmanned aerial vehicles (UAV) formation problem and proposes a new method inspired by bird flocking and foraging behavior. A bidirectional communication network, a navigator based on bird foraging behavior, a controller based on bird interaction and a movement switch are developed for multi-UAV formation. Lyapunov's second method and mechanical energy method are adopted for stability analysis. Parameters of the controller are optimized by Levy-flight based pigeon inspired optimization (Levy-PIO). Patrol missions along a square and an S shaped trajectory are designed to test this formation method. Simula- tions prove that the bird flocking and foraging strategy can accomplish the mission and obtain satisfying performance.展开更多
Current applications using single unmanned vehicle have been gradually extended to multiple ones due to their increased efficiency in mission accomplishment, expanded coverage areas and ranges, as well as enhanced sys...Current applications using single unmanned vehicle have been gradually extended to multiple ones due to their increased efficiency in mission accomplishment, expanded coverage areas and ranges, as well as enhanced system reliability. This paper presents a flocking control method with application to a fleet of unmanned quadrotor helicopters (UQHs). Three critical characteristics of formation keeping, collision avoidance, and velocity matching have been taken into account in the algorithm development to make it capable of accomplishing the desired objectives (like forest/pipeline surveillance) by safely and efficiently operating a group of UQHs. To achieve these, three layered system design philosophy is considered in this study. The first layer is the flocking controller which is designed based on the kinematics of UQH. The modified Cucker and Smale model is used for guaranteeing the convergence of UQHs to flocking, while a repelling force between each two UQHs is also added for ensuring a specified safety distance. The second layer is the motion controller which is devised based on the kinetics of UQH by employing the augmented state-feedback control approach to greatly minimize the steady-state error. The last layer is the UQH system along with its actuators. Two primary contributions have been made in this work: first, different from most of the existing works conducted on agents with double integrator dynamics, a new flocking control algorithm has been designed and implemented on a group of UQHs with nonlinear dynamics. Furthermore, the constraint of fixed neighbouring distance in formation has been relaxed expecting to significantly reduce the complexity caused by the increase of agents number and provide more flexibility to the formation control. Extensive numerical simulations on a group of UQH nonlinear models have been carried out to verify the effectiveness of the proposed method.展开更多
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金financial support of the National Natural Science Foundation of China(Grant No.11974255)。
文摘Active rods propelled along their long axis align their velocities and orientations simultaneously in collision.However,as the propulsion is perpendicular to the long axis,velocity alignment becomes dynamically difficult.Here,we show that ellipsoidal Quincke roller propelled along their short-axis(perpendicular to the long axis)can align their velocities by flipping and form flocking with nematic order.The flipping arises from the reversible transition between the static parallel spinless state and the spinning transversal state of ellipsoidal Quincke rollers.This is possible only near(above)the critical field where both the parallel spinless state and the spinning transversal spinning are metastable.The flipping-facilitated alignment offers an extra aligning mechanism for elongate active agents,and the resulting active liquid crystals serve a model system to explore the defect dynamics as the propulsion deviates from the local nematic orientation which has not been addressed yet.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
基金supported in part by the Guangdong Provincial Universities'Characteristic Innovation Project under Grant 2024KTSCX360in part by the Guangdong Educational Science Planning Project under Grant 2023GXJK837.
文摘Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios.
基金supported by the National Natural Science Foundation of China(61903099)the Natural Science Foundation of Heilongjiang Province(LH2020F025)+2 种基金the Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-K20200470)the Postdoctoral Science Foundation of China(2021M690812)the Postdoctoral Science Fund of Heilongjiang Province(LBH-Z21048).
文摘This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.
基金supported by Social Science Fund of Hunan province(Grant No.22JD074)the Research Foundation of Education Bureau of Hunan province(Grant No.22B0912).
文摘In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
基金This work was supported in part by the NSFC (No.60274020) and the NSFC International Collaborative Project (No.60340420431).
文摘Multiple mobile agents with double integrator dynamics, following a leader to achieve a flocking motion formation, are studied in this paper. A class of local control laws for a group of mobile agents is proposed. From a theoretical proof, the following conclusions are reached: (i) agents globally align their velocity vectors with a leader, (ii) they converge their velocities to the leaders velocity, (iii) collisions among interconnected agents are avoided, and (iv) agent's artificial potential functions are minimized. We model the interaction and/or communication relationship between agents by algebraic graph theory. Stability analysis is achieved by using classical Lyapunov theory in a fixed network topology, and differential inclusions and nonsmooth analysis in a switching network topology respectively. Simulation examples are provided.
基金co-supported by the National Natural Science Foundation of China (No. 61403100)the Open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology of China (No. HIT.KLOF. MST.201704)the Fundamental Research Funds for the Central Universities of China (No. HIT.NSRIF.2015.037)
文摘This paper addresses the fixed-time adaptive model reference sliding mode control for an air-to-ground missile associated with large speed ranges, mismatched disturbances and un-modeled dynamics. Firstly, a sliding mode surface is developed by the tracking error of the state equation and the model reference state equation with respect to the air-to-ground missile. More specifically,a novel fixed-time adaptive reaching law is presented. Subsequently, the mismatched disturbances and the un-modeled dynamics are treated as the model errors of the state equation. These model errors are estimated by means of a fixed-time disturbance observer, and they are also utilized to compensate the proposed controller. Therefore, the fixed-time controller is obtained by an adaptive reaching law and a fixed-time disturbance observer. Closed-loop stability of the proposed controller is established. Finally, simulation results including Monte Carlo simulations, nonlinear six-DegreeOf-Freedom(6-DOF) simulations and different ranges are presented to demonstrate the efficacy of the proposed control scheme.
文摘We consider the problem of controlling a group of mobile agents to form a designated formation while flocking within a constrained environment. We first propose a potential field based method to drive the agents to move in connection with their neighbors, and regulate their relative positions to achieve the specific formation. The communication topology is preserved during the motion. We then extend the method to flocking with environmental constraints. Stability properties are analyzed to guarantee that all agents eventually form the desired formation while flocking, and flock safely without collision with the environment boundary. We verify our algorithm through simulations on a group of agents performing maximum coverage flocking and traveling through an unknown constrained environment.
文摘This paper considers a multiple unmanned aerial vehicles (UAV) formation problem and proposes a new method inspired by bird flocking and foraging behavior. A bidirectional communication network, a navigator based on bird foraging behavior, a controller based on bird interaction and a movement switch are developed for multi-UAV formation. Lyapunov's second method and mechanical energy method are adopted for stability analysis. Parameters of the controller are optimized by Levy-flight based pigeon inspired optimization (Levy-PIO). Patrol missions along a square and an S shaped trajectory are designed to test this formation method. Simula- tions prove that the bird flocking and foraging strategy can accomplish the mission and obtain satisfying performance.
文摘Current applications using single unmanned vehicle have been gradually extended to multiple ones due to their increased efficiency in mission accomplishment, expanded coverage areas and ranges, as well as enhanced system reliability. This paper presents a flocking control method with application to a fleet of unmanned quadrotor helicopters (UQHs). Three critical characteristics of formation keeping, collision avoidance, and velocity matching have been taken into account in the algorithm development to make it capable of accomplishing the desired objectives (like forest/pipeline surveillance) by safely and efficiently operating a group of UQHs. To achieve these, three layered system design philosophy is considered in this study. The first layer is the flocking controller which is designed based on the kinematics of UQH. The modified Cucker and Smale model is used for guaranteeing the convergence of UQHs to flocking, while a repelling force between each two UQHs is also added for ensuring a specified safety distance. The second layer is the motion controller which is devised based on the kinetics of UQH by employing the augmented state-feedback control approach to greatly minimize the steady-state error. The last layer is the UQH system along with its actuators. Two primary contributions have been made in this work: first, different from most of the existing works conducted on agents with double integrator dynamics, a new flocking control algorithm has been designed and implemented on a group of UQHs with nonlinear dynamics. Furthermore, the constraint of fixed neighbouring distance in formation has been relaxed expecting to significantly reduce the complexity caused by the increase of agents number and provide more flexibility to the formation control. Extensive numerical simulations on a group of UQH nonlinear models have been carried out to verify the effectiveness of the proposed method.