A double sampling circuit to eliminating fixed pattern noise(FPN) in CMOS image sensor (CIS) is presented. Double sampling is implemented by column switch capacitor amplifier directly, and offset compensation is added...A double sampling circuit to eliminating fixed pattern noise(FPN) in CMOS image sensor (CIS) is presented. Double sampling is implemented by column switch capacitor amplifier directly, and offset compensation is added to the amplifier to suppress column FPN. The amplifier is embedded in a 64×64 CIS and successfully fabricated with chartered 0.35 μm process. Theory analysis and circuit simulation indicate that FPN can be suppressed from millivolt to microvolt. Test results show that FPN is smaller than one least-significant bit of 8 bit ADC. FPN is reduced to an acceptable level with double sampling technique implemented with switch capacitor amplifier.展开更多
A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correl...A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correlative double sampling(CDS),pixel FPN is cancelled and column FPN is stored and eliminated by the sampleand-hold operation of digitally programmable gain amplifier(DPGA).The bandwidth balance technology based on operational amplifier(op-amp) sharing is also introduced to decrease the power dissi...展开更多
It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative freq...It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies.展开更多
A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 4...A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 43%,higher than the traditional factor of 30%. Moreover, compared with the conventional method whose fixed pattern noise (FPN) is around 0.5%, a dynamic digital double sampling technique is developed, which possesses simpler circuit architecture and a better FPN suppression outcome. The CMOS image sensor chip is implemented in the 0.35μm mixed signal process of a Chartered by MPW. The experimental results show that the chip operates welt,with an FPN of about 0.17%.展开更多
A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane arra...A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane array was established; a compensating algorithm utilizing reference source was derived and simulating programs were designed. The images of compensating process verify the influence of nonuniformity of responsibility and offset on fixed pattern noise. The result show that simulating method of investigating compensation technology for focal plane arrays is feasible, the generated images and methods can be used to the study of image recognition.展开更多
A 320×240 CMOS image sensor is demonstrated,which is implemented by a standard 0.6 μm 2P2M CMOS process.For reducing the chip area,each 2×2-pixel block shares a sample/hold circuit,analog-to-digital convert...A 320×240 CMOS image sensor is demonstrated,which is implemented by a standard 0.6 μm 2P2M CMOS process.For reducing the chip area,each 2×2-pixel block shares a sample/hold circuit,analog-to-digital converter and 1-b memory.The 2×2 pixel pitch has an area of 40 μm×40 μm and the fill factor is about 16%.While operating at a low frame rate,the sensor dissipates a very low power by power-management circuit making pixel-level comparators in an idle state.A digital correlated double sampling,which eliminates fixed pattern noise,improves SNR of the sensor, and multiple sampling operations make the sensor have a wide dynamic range.展开更多
The logarithmic response complementary metal oxide semiconductor (CMOS) image sensor provides a wide dynamic range, but its drawback is the lack of simple fixed pattern noise(FPN) cancellation scheme. Designed is ...The logarithmic response complementary metal oxide semiconductor (CMOS) image sensor provides a wide dynamic range, but its drawback is the lack of simple fixed pattern noise(FPN) cancellation scheme. Designed is a novel logarithmic active pixel sensor(APS) with high dynamic range and high output swing. Firstly, the operation principle of mixed-model APS is introduced. The pixel can work in three operation modes by choosing the proper control signals. Then, FPN sources of logarithmic APS are analyzed, and double-sampled technique is implemented to reduce FPN. Finally, according to the simulation results, layout is designed and has passed design rule check(DRC), electronic rule eheck(ERC) and layout versus schematic(LVS) verifications, and the post-simulation results are basically in agreement with the simulation results. Dynamic range of the new logarithmic APS can reach about 140 dB; and the output swing is about 750 inV. Results show that by using double sampled technique, most FPN is eliminated and the dynamic range is enhanced.展开更多
A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) ...A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) is used in the chip,which comprises a 256×256 pixel array together with column amplifiers,scan array circuits,series interface,control logic and Analog-Digital Converter (ADC). With the use of smart layout design,fill factor of pixel cell is 43%. Moreover,a new method of Dynamic Digital Double Sample (DDDS) which removes Fixed Pattern Noise (FPN) is used. The CMOS image sensor chip is implemented based on the 0.35μm process of chartered by Multi-Project Wafer (MPW). This chip performs well as expected.展开更多
Three hypotheses have attempted to explain the phenomenon of contagious yawning. It has been hypothesized that it is a fixed action pattern for which the releasing stimulus is the observation of another yawn, that it ...Three hypotheses have attempted to explain the phenomenon of contagious yawning. It has been hypothesized that it is a fixed action pattern for which the releasing stimulus is the observation of another yawn, that it is the result of non-conscious mimicry emerging through close links between perception and action or that it is the result of empathy, involving the ability to engage in mental state attribution. This set of experiments sought to distinguish between these hypotheses by examining contagious yawning in a species that is unlikely to show nonconscious mimicry and empathy but does respond to social stimuli: the red-footed tortoise Geochelone carbonaria. A demonstrator tortoise was conditioned to yawn when presented with a red square-shaped stimulus. Observer tortoises were exposed to three conditions: observation of conditioned yawn, non demonstration control, and stimulus only control. We measured the number of yawns for each observer animal in each condition. There was no difference between conditions. Experiment 2 therefore increased the number of conditioned yawns presented. Again, there was no significant difference between conditions. It seemed plausible that the tortoises did not view the conditioned yawn as a real yawn and therefore a final experiment was run using video recorded stimuli. The observer tortoises were presented with three conditions: real yawn, conditioned yawns and empty background. Again there was no significant difference between conditions. We therefore conclude that the red-footed tortoise does not yawn in response to observing a conspecific yawn. This suggests that contagious yawning is not the result of a fixed action pattern but may involve more complex social processes [Current Zoology 57 (4): 477-484, 2011].展开更多
基金Supported by National Natural Science Foundation of China (No.60576025).
文摘A double sampling circuit to eliminating fixed pattern noise(FPN) in CMOS image sensor (CIS) is presented. Double sampling is implemented by column switch capacitor amplifier directly, and offset compensation is added to the amplifier to suppress column FPN. The amplifier is embedded in a 64×64 CIS and successfully fabricated with chartered 0.35 μm process. Theory analysis and circuit simulation indicate that FPN can be suppressed from millivolt to microvolt. Test results show that FPN is smaller than one least-significant bit of 8 bit ADC. FPN is reduced to an acceptable level with double sampling technique implemented with switch capacitor amplifier.
基金Supported by National Natural Science Foundation of China (No.60806010,No.60976030)Tianjin Innovation Special Funds for Science and Technology (No.05FZZDGX00200)
文摘A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correlative double sampling(CDS),pixel FPN is cancelled and column FPN is stored and eliminated by the sampleand-hold operation of digitally programmable gain amplifier(DPGA).The bandwidth balance technology based on operational amplifier(op-amp) sharing is also introduced to decrease the power dissi...
基金supported by the Research on Key Technologies and Typical Applications of Big Data in Railway Production and Operation(P2023S006)the Fundamental Research Funds for the Central Universities(2022JBZY023).
文摘It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies.
文摘A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 43%,higher than the traditional factor of 30%. Moreover, compared with the conventional method whose fixed pattern noise (FPN) is around 0.5%, a dynamic digital double sampling technique is developed, which possesses simpler circuit architecture and a better FPN suppression outcome. The CMOS image sensor chip is implemented in the 0.35μm mixed signal process of a Chartered by MPW. The experimental results show that the chip operates welt,with an FPN of about 0.17%.
文摘A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane array was established; a compensating algorithm utilizing reference source was derived and simulating programs were designed. The images of compensating process verify the influence of nonuniformity of responsibility and offset on fixed pattern noise. The result show that simulating method of investigating compensation technology for focal plane arrays is feasible, the generated images and methods can be used to the study of image recognition.
文摘A 320×240 CMOS image sensor is demonstrated,which is implemented by a standard 0.6 μm 2P2M CMOS process.For reducing the chip area,each 2×2-pixel block shares a sample/hold circuit,analog-to-digital converter and 1-b memory.The 2×2 pixel pitch has an area of 40 μm×40 μm and the fill factor is about 16%.While operating at a low frame rate,the sensor dissipates a very low power by power-management circuit making pixel-level comparators in an idle state.A digital correlated double sampling,which eliminates fixed pattern noise,improves SNR of the sensor, and multiple sampling operations make the sensor have a wide dynamic range.
基金National Natural Science Foundation of China (60406003)Natural Science Foundation of Tianjin(08JCZDJC24100)
文摘The logarithmic response complementary metal oxide semiconductor (CMOS) image sensor provides a wide dynamic range, but its drawback is the lack of simple fixed pattern noise(FPN) cancellation scheme. Designed is a novel logarithmic active pixel sensor(APS) with high dynamic range and high output swing. Firstly, the operation principle of mixed-model APS is introduced. The pixel can work in three operation modes by choosing the proper control signals. Then, FPN sources of logarithmic APS are analyzed, and double-sampled technique is implemented to reduce FPN. Finally, according to the simulation results, layout is designed and has passed design rule check(DRC), electronic rule eheck(ERC) and layout versus schematic(LVS) verifications, and the post-simulation results are basically in agreement with the simulation results. Dynamic range of the new logarithmic APS can reach about 140 dB; and the output swing is about 750 inV. Results show that by using double sampled technique, most FPN is eliminated and the dynamic range is enhanced.
文摘A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) is used in the chip,which comprises a 256×256 pixel array together with column amplifiers,scan array circuits,series interface,control logic and Analog-Digital Converter (ADC). With the use of smart layout design,fill factor of pixel cell is 43%. Moreover,a new method of Dynamic Digital Double Sample (DDDS) which removes Fixed Pattern Noise (FPN) is used. The CMOS image sensor chip is implemented based on the 0.35μm process of chartered by Multi-Project Wafer (MPW). This chip performs well as expected.
文摘Three hypotheses have attempted to explain the phenomenon of contagious yawning. It has been hypothesized that it is a fixed action pattern for which the releasing stimulus is the observation of another yawn, that it is the result of non-conscious mimicry emerging through close links between perception and action or that it is the result of empathy, involving the ability to engage in mental state attribution. This set of experiments sought to distinguish between these hypotheses by examining contagious yawning in a species that is unlikely to show nonconscious mimicry and empathy but does respond to social stimuli: the red-footed tortoise Geochelone carbonaria. A demonstrator tortoise was conditioned to yawn when presented with a red square-shaped stimulus. Observer tortoises were exposed to three conditions: observation of conditioned yawn, non demonstration control, and stimulus only control. We measured the number of yawns for each observer animal in each condition. There was no difference between conditions. Experiment 2 therefore increased the number of conditioned yawns presented. Again, there was no significant difference between conditions. It seemed plausible that the tortoises did not view the conditioned yawn as a real yawn and therefore a final experiment was run using video recorded stimuli. The observer tortoises were presented with three conditions: real yawn, conditioned yawns and empty background. Again there was no significant difference between conditions. We therefore conclude that the red-footed tortoise does not yawn in response to observing a conspecific yawn. This suggests that contagious yawning is not the result of a fixed action pattern but may involve more complex social processes [Current Zoology 57 (4): 477-484, 2011].