Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i...Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.展开更多
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of...Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry.展开更多
Accurate acquisition and prediction of acoustic parameters of seabed sediments are crucial in marine sound propagation research.While the relationship between sound velocity and physical properties of sediment has bee...Accurate acquisition and prediction of acoustic parameters of seabed sediments are crucial in marine sound propagation research.While the relationship between sound velocity and physical properties of sediment has been extensively studied,there is still no consensus on the correlation between acoustic attenuation coefficient and sediment physical properties.Predicting the acoustic attenuation coefficient remains a challenging issue in sedimentary acoustic research.In this study,we propose a prediction method for the acoustic attenuation coefficient using machine learning algorithms,specifically the random forest(RF),support vector machine(SVR),and convolutional neural network(CNN)algorithms.We utilized the acoustic attenuation coefficient and sediment particle size data from 52 stations as training parameters,with the particle size parameters as the input feature matrix,and measured acoustic attenuation as the training label to validate the attenuation prediction model.Our results indicate that the error of the attenuation prediction model is small.Among the three models,the RF model exhibited the lowest prediction error,with a mean squared error of 0.8232,mean absolute error of 0.6613,and root mean squared error of 0.9073.Additionally,when we applied the models to predict the data collected at different times in the same region,we found that the models developed in this study also demonstrated a certain level of reliability in real prediction scenarios.Our approach demonstrates that constructing a sediment acoustic characteristics model based on machine learning is feasible to a certain extent and offers a novel perspective for studying sediment acoustic properties.展开更多
This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by cons...This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by constructing multi-layer neural networks to simulate the learning process of the human brain.The article explores the application of deep learning in solving partial differential equations,optimizing problems,and data-driven modeling,and analyzes its advantages in computational efficiency,accuracy,and adaptability.At the same time,this article also points out the challenges faced by deep learning numerical computation methods in terms of computational efficiency,interpretability,and generalization ability,and proposes strategies and future development directions for integrating with traditional numerical methods.展开更多
Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real...Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real-time automated damage detection method by developing a theory-assisted adaptive mutiagent twin delayed deep deterministic(TA2-MATD3)policy gradient algorithm.First,the theoretical framework of reinforcement-learning-driven damage detection is established.To address the disadvantages of traditional mutiagent twin delayed deep deterministic(MATD3)method,the theory-assisted mechanism and the adaptive experience playback mechanism are introduced.Moreover,a historical residential house built in 1889 was taken as an example,using its 12-month structural health monitoring data.TA2-MATD3 was compared with existing damage detection methods in terms of the convergence ratio,online computing efficiency,and damage detection accuracy.The results show that the computational efficiency of TA2-MATD3 is approximately 117–160 times that of the traditional methods.The convergence ratio of damage detection on the training set is approximately 97%,and that on the test set is in the range of 86.2%–91.9%.In addition,the main apparent damages found in the field survey were identified by TA2-MATD3.The results indicate that the proposed method can significantly improve the online computing efficiency and damage detection accuracy.This research can provide novel perspectives for the use of reinforcement learning methods to conduct damage detection in online structural health monitoring.展开更多
Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn...Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.展开更多
Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content...Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content,young hypertensive patients admitted to the hospital from January 2022 to December 2024 were selected as the research object and at least 950 patients were included according to the sample size calculation.According to the existence of anxiety,950 patients were divided into control group(n=650)and observation group(n=300),and the clinical data of all patients were collected for univariate analysis and multivariate Logistic regression analysis to get the risk factors of hypertension patients complicated with anxiety in.All patients were randomly divided into a training set(n=665)and a test set(n=285)according to the ratio of 7:3,and the evaluation efficiency of different prediction models was obtained by using machine learning algorithm.To evaluate the clinical application effect of the prediction model.Results:(1)Univariate analysis showed that age,BMI,education background,marital status,smoking,drinking,sleep disorder,family history of hypertension,history of diabetes,history of hyperlipidemia,history of cerebral infarction,and TC were important risk factors for young hypertensive patients complicated with anxiety.(2)Multivariate Logistic regression analysis showed that hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors for young hypertensive patients complicated with anxiety.(3)Extra Trees has the highest predictive power for young people with hypertension complicated with anxiety,while Decision-Tree has the lowest predictive power.Conclusion:Hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors that affect the anxiety of young hypertensive patients.Extra Trees model has the best prediction efficiency among different groups of models.展开更多
Lithium-plating-type defects in lithium-ion batteries pose severe safety risks due to their potential to trigger thermal runaway.To prevent defective batteries from entering the market,developing in-line detection met...Lithium-plating-type defects in lithium-ion batteries pose severe safety risks due to their potential to trigger thermal runaway.To prevent defective batteries from entering the market,developing in-line detection methods during manufacturing is critical yet challenging.This study introduces a deep learning-based method for detecting lithium-plating-type defects using formation and capacity grading data,enabling accurate identification of defective batteries without additional equipment.First,lithiumplating-type defect batteries with various types and area ratios are fabricated.Formation and capacity grading data from 154 batteries(48 defective,106 normal)are collected to construct a dataset.Subsequently,a dual-task deep learning model is then developed,where the reconstruction task learns latent representations from the features,while the classification task identifies the defective batteries.Shapley value analysis further quantifies feature importance,revealing that defective batteries exhibit reduced coulombic efficiency(attributed to irreversible lithium loss)and elevated open-circuit voltage/K-values(linked to self-equalization effects).These findings align with the electrochemical mechanisms of lithium plating,enhancing the model's interpretability.Validated on statistically robust samples shows that the framework achieves a recall of 97.14%for defective batteries and an overall accuracy of 97.42%.This deep learning-driven solution provides a scalable and cost-effective quality control strategy for battery manufacturing.展开更多
The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is ess...The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is essential for enhancing the performance and durability of SOFCs.Accurate prediction of mechanical properties of porous electrode can be achieved by microscale finite element modeling based on three-dimensional(3D)microstructures,which requires expensive 3D tomography techniques and massive computational resources.In this study,we proposed a cost-effective alternative approach to access the mechanical properties of porous electrodes,with the elastic properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δc)athode serving as a case study.Firstly,a stochastic modeling was used to reconstruct 3D microstructures from two-dimensional(2D)cross-sections as an alternative to expensive tomography.Then,the discrete element method(DEM)was used to predict the elastic properties of porous ceramics based on the discretized 3D microstructures reconstructed by stochastic modeling.Based on 2D microstructure and the elastic properties calculated by the DEM modeling of the 3D reconstructed porous microstructures,a convolutional neural network(CNN)based deep learning model was built to predict the elastic properties rapidly from 2D microstructures.The proposed combined framework can be implemented with limited computational resources and provide a basis for rapid prediction of mechanical properties and parameter estimation for multiscale modeling of SOFCs.展开更多
The inelastic behavior of thermoplastic polymers may involve shearing and crazing,and both depend on temperature and strain rate.Traditional constitutive models account for temperature and strain rate through phenomen...The inelastic behavior of thermoplastic polymers may involve shearing and crazing,and both depend on temperature and strain rate.Traditional constitutive models account for temperature and strain rate through phenomenological or empirical formulas.In this study,we present a physics-guided machine learning(ML)framework to model shear and craze in polymeric materials.The effects of all three principal stresses for the craze initiation are considered other than the maximum tensile principal stress solely in previous works.We implemented a finite element framework through a user-defined material subroutine and applied the constitutive model to the deformation in three polymers(PLA 4060D,PLA 3051D,and HIPS).The result shows that our ML-based model can predict the stress-strain and volume-strain responses at different strain rates with high accuracy.Notably,the ML-based approach needs no assumptions about yield criteria or hardening laws.This work highlights the potential of hybrid physics-ML paradigms to overcome the trade-offs between model complexity and accuracy in polymer mechanics,paving the way for computationally efficient and generalizable constitutive models for thermoplastic materials.展开更多
Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus o...Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively.展开更多
The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the ...The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels.展开更多
The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedic...The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedicated to optimizing box wing configurations using low-fidelity data driven machine learning approach.This technique showcases its practicality through the utilization of a tailored low-fidelity machine learning technique,specifically designed for early-stage wing configuration.By employing surrogate model trained on small dataset derived from low-fidelity simulations,our method aims to predict outputs within an acceptable range.This strategy significantly mitigates computational costs and expedites the design exploration process.The methodology's validation relies on its successful application in optimizing the box wing of PARSIFAL,serving as a benchmark,while the primary focus remains on optimizing the newly designed box wing by Bionica.Applying this method to the Bionica configuration led to a notable 14%improvement in overall aerodynamic effciency.Furthermore,all the optimized results obtained from machine learning model undergo rigorous assessments through the high-fidelity RANS analysis for confirmation.This methodology introduces innovative approach that aims to streamline computational processes,potentially reducing the time and resources required compared to traditional optimization methods.展开更多
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ...As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications.展开更多
With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engi...With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost.展开更多
Measurement-while-drilling(MWD)and guidance technologies have been extensively deployed in the exploitation of oil,natural gas,and other energy resources.Conventional control approaches are plagued by challenges,inclu...Measurement-while-drilling(MWD)and guidance technologies have been extensively deployed in the exploitation of oil,natural gas,and other energy resources.Conventional control approaches are plagued by challenges,including limited anti-interference capabilities and the insufficient generalization of decision-making experience.To address the intricate problem of directional well trajectory control,an intelligent algorithm design framework grounded in the high-level interaction mechanism between geology and engineering is put forward.This framework aims to facilitate the rapid batch migration and update of drilling strategies.The proposed directional well trajectory control method comprehensively considers the multi-source heterogeneous attributes of drilling experience data,leverages the generative simulation of the geological drilling environment,and promptly constructs a directional well trajectory control model with self-adaptive capabilities to environmental variations.This construction is carried out based on three hierarchical levels:“offline pre-drilling learning,online during-drilling interaction,and post-drilling model transfer”.Simulation results indicate that the guidance model derived from this method demonstrates remarkable generalization performance and accuracy.It can significantly boost the adaptability of the control algorithm to diverse environments and enhance the penetration rate of the target reservoir during drilling operations.展开更多
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge...The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.展开更多
As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba...As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.展开更多
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization...A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.展开更多
Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstr...Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.展开更多
文摘Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.
文摘Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry.
基金funded by the Basic Scientific Fund for National Public Research Institutes of China(No.2022 S01)the National Natural Science Foundation of China(Nos.42176191,42049902,and U22A2012)+5 种基金the Shandong Provincial Natural Science Foundation,China(No.ZR2022YQ40)the National Key R&D Program of China(No.2021YFF0501202)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2023 SP232)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.241gqb006)Data acquisition and sample collections were supported by the National Natural Science Foundation of China Open Research Cruise(Cruise No.NORC2021-02+NORC2021301)funded by the Shiptime Sharing Project of the National Natural Science Foundation of China。
文摘Accurate acquisition and prediction of acoustic parameters of seabed sediments are crucial in marine sound propagation research.While the relationship between sound velocity and physical properties of sediment has been extensively studied,there is still no consensus on the correlation between acoustic attenuation coefficient and sediment physical properties.Predicting the acoustic attenuation coefficient remains a challenging issue in sedimentary acoustic research.In this study,we propose a prediction method for the acoustic attenuation coefficient using machine learning algorithms,specifically the random forest(RF),support vector machine(SVR),and convolutional neural network(CNN)algorithms.We utilized the acoustic attenuation coefficient and sediment particle size data from 52 stations as training parameters,with the particle size parameters as the input feature matrix,and measured acoustic attenuation as the training label to validate the attenuation prediction model.Our results indicate that the error of the attenuation prediction model is small.Among the three models,the RF model exhibited the lowest prediction error,with a mean squared error of 0.8232,mean absolute error of 0.6613,and root mean squared error of 0.9073.Additionally,when we applied the models to predict the data collected at different times in the same region,we found that the models developed in this study also demonstrated a certain level of reliability in real prediction scenarios.Our approach demonstrates that constructing a sediment acoustic characteristics model based on machine learning is feasible to a certain extent and offers a novel perspective for studying sediment acoustic properties.
文摘This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by constructing multi-layer neural networks to simulate the learning process of the human brain.The article explores the application of deep learning in solving partial differential equations,optimizing problems,and data-driven modeling,and analyzes its advantages in computational efficiency,accuracy,and adaptability.At the same time,this article also points out the challenges faced by deep learning numerical computation methods in terms of computational efficiency,interpretability,and generalization ability,and proposes strategies and future development directions for integrating with traditional numerical methods.
基金supported by National Key Research and Development Program of China(2023YFF0906100)National Natural Science Foundation of China(52408008)Key Research and Development Program of Jiangsu Province(BE2022833).
文摘Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real-time automated damage detection method by developing a theory-assisted adaptive mutiagent twin delayed deep deterministic(TA2-MATD3)policy gradient algorithm.First,the theoretical framework of reinforcement-learning-driven damage detection is established.To address the disadvantages of traditional mutiagent twin delayed deep deterministic(MATD3)method,the theory-assisted mechanism and the adaptive experience playback mechanism are introduced.Moreover,a historical residential house built in 1889 was taken as an example,using its 12-month structural health monitoring data.TA2-MATD3 was compared with existing damage detection methods in terms of the convergence ratio,online computing efficiency,and damage detection accuracy.The results show that the computational efficiency of TA2-MATD3 is approximately 117–160 times that of the traditional methods.The convergence ratio of damage detection on the training set is approximately 97%,and that on the test set is in the range of 86.2%–91.9%.In addition,the main apparent damages found in the field survey were identified by TA2-MATD3.The results indicate that the proposed method can significantly improve the online computing efficiency and damage detection accuracy.This research can provide novel perspectives for the use of reinforcement learning methods to conduct damage detection in online structural health monitoring.
文摘Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.
文摘Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content,young hypertensive patients admitted to the hospital from January 2022 to December 2024 were selected as the research object and at least 950 patients were included according to the sample size calculation.According to the existence of anxiety,950 patients were divided into control group(n=650)and observation group(n=300),and the clinical data of all patients were collected for univariate analysis and multivariate Logistic regression analysis to get the risk factors of hypertension patients complicated with anxiety in.All patients were randomly divided into a training set(n=665)and a test set(n=285)according to the ratio of 7:3,and the evaluation efficiency of different prediction models was obtained by using machine learning algorithm.To evaluate the clinical application effect of the prediction model.Results:(1)Univariate analysis showed that age,BMI,education background,marital status,smoking,drinking,sleep disorder,family history of hypertension,history of diabetes,history of hyperlipidemia,history of cerebral infarction,and TC were important risk factors for young hypertensive patients complicated with anxiety.(2)Multivariate Logistic regression analysis showed that hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors for young hypertensive patients complicated with anxiety.(3)Extra Trees has the highest predictive power for young people with hypertension complicated with anxiety,while Decision-Tree has the lowest predictive power.Conclusion:Hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors that affect the anxiety of young hypertensive patients.Extra Trees model has the best prediction efficiency among different groups of models.
基金supported by the National Natural Science Foundation of China(NSFC,52277223 and 51977131)the Shanghai Pujiang Programme(23PJD062)。
文摘Lithium-plating-type defects in lithium-ion batteries pose severe safety risks due to their potential to trigger thermal runaway.To prevent defective batteries from entering the market,developing in-line detection methods during manufacturing is critical yet challenging.This study introduces a deep learning-based method for detecting lithium-plating-type defects using formation and capacity grading data,enabling accurate identification of defective batteries without additional equipment.First,lithiumplating-type defect batteries with various types and area ratios are fabricated.Formation and capacity grading data from 154 batteries(48 defective,106 normal)are collected to construct a dataset.Subsequently,a dual-task deep learning model is then developed,where the reconstruction task learns latent representations from the features,while the classification task identifies the defective batteries.Shapley value analysis further quantifies feature importance,revealing that defective batteries exhibit reduced coulombic efficiency(attributed to irreversible lithium loss)and elevated open-circuit voltage/K-values(linked to self-equalization effects).These findings align with the electrochemical mechanisms of lithium plating,enhancing the model's interpretability.Validated on statistically robust samples shows that the framework achieves a recall of 97.14%for defective batteries and an overall accuracy of 97.42%.This deep learning-driven solution provides a scalable and cost-effective quality control strategy for battery manufacturing.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172104 and 11932005)the Talent Recruitment Project of Guangdong(2021QN02L892)+3 种基金the Stable Supporting Fund of Shenzhen(GXWD20231130153335002)the Shccig-Qinling Program(SMYJY202300140C)the program of Innovation Team in Universities and Colleges in Guangdong(2021KCXTD006)Development and Reform Commission of Shenzhen(XMHT20220103004).
文摘The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is essential for enhancing the performance and durability of SOFCs.Accurate prediction of mechanical properties of porous electrode can be achieved by microscale finite element modeling based on three-dimensional(3D)microstructures,which requires expensive 3D tomography techniques and massive computational resources.In this study,we proposed a cost-effective alternative approach to access the mechanical properties of porous electrodes,with the elastic properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δc)athode serving as a case study.Firstly,a stochastic modeling was used to reconstruct 3D microstructures from two-dimensional(2D)cross-sections as an alternative to expensive tomography.Then,the discrete element method(DEM)was used to predict the elastic properties of porous ceramics based on the discretized 3D microstructures reconstructed by stochastic modeling.Based on 2D microstructure and the elastic properties calculated by the DEM modeling of the 3D reconstructed porous microstructures,a convolutional neural network(CNN)based deep learning model was built to predict the elastic properties rapidly from 2D microstructures.The proposed combined framework can be implemented with limited computational resources and provide a basis for rapid prediction of mechanical properties and parameter estimation for multiscale modeling of SOFCs.
基金supported by the National Natural Science Foundation of China(NSFC)Excellent Research Group Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.12588201)。
文摘The inelastic behavior of thermoplastic polymers may involve shearing and crazing,and both depend on temperature and strain rate.Traditional constitutive models account for temperature and strain rate through phenomenological or empirical formulas.In this study,we present a physics-guided machine learning(ML)framework to model shear and craze in polymeric materials.The effects of all three principal stresses for the craze initiation are considered other than the maximum tensile principal stress solely in previous works.We implemented a finite element framework through a user-defined material subroutine and applied the constitutive model to the deformation in three polymers(PLA 4060D,PLA 3051D,and HIPS).The result shows that our ML-based model can predict the stress-strain and volume-strain responses at different strain rates with high accuracy.Notably,the ML-based approach needs no assumptions about yield criteria or hardening laws.This work highlights the potential of hybrid physics-ML paradigms to overcome the trade-offs between model complexity and accuracy in polymer mechanics,paving the way for computationally efficient and generalizable constitutive models for thermoplastic materials.
基金supported by the National Key R&D Program of China(2022YFD1401600)the National Science Foundation for Distinguished Young Scholars of Zhejang Province,China(LR23C140001)supported by the Key Area Research and Development Program of Guangdong Province,China(2018B020205003 and 2020B0202090001).
文摘Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively.
基金the Yunnan Fundamental Research Projects(No.202301AT070452)the National Natural Science Foundation of China(No.61861023)。
文摘The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels.
基金The funding for this publication was provided by Johannes Kepler University(JKU),Linz.Special thanks to Prof.Zongmin DENG from Beihang University for his invaluable guidance,insightful feedback,and constructive criticism,which greatly enhanced the quality of this manuscript.We extend our heartfelt gratitude to the PARSIFAL team for providing the supporting materials,which inspired this study.
文摘The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedicated to optimizing box wing configurations using low-fidelity data driven machine learning approach.This technique showcases its practicality through the utilization of a tailored low-fidelity machine learning technique,specifically designed for early-stage wing configuration.By employing surrogate model trained on small dataset derived from low-fidelity simulations,our method aims to predict outputs within an acceptable range.This strategy significantly mitigates computational costs and expedites the design exploration process.The methodology's validation relies on its successful application in optimizing the box wing of PARSIFAL,serving as a benchmark,while the primary focus remains on optimizing the newly designed box wing by Bionica.Applying this method to the Bionica configuration led to a notable 14%improvement in overall aerodynamic effciency.Furthermore,all the optimized results obtained from machine learning model undergo rigorous assessments through the high-fidelity RANS analysis for confirmation.This methodology introduces innovative approach that aims to streamline computational processes,potentially reducing the time and resources required compared to traditional optimization methods.
基金funded by National Natural Science Foundation of China(Grants Nos.41825018 and 42141009)the Second Tibetan Plateau Scientific Expedition and Research Program(Grants No.2019QZKK0904)。
文摘As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications.
基金co-supported by the Aeronautical Science Foundation of China(Nos.2018ZA52002,2019ZA052011).
文摘With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost.
基金supported by the National Key R&D Program of China(No.2019YFA0708304)the CNPC Innovation Fund(No.2022DQ02-0609)the Scientific research and technology development Project of CNPC(No.2022DJ4507).
文摘Measurement-while-drilling(MWD)and guidance technologies have been extensively deployed in the exploitation of oil,natural gas,and other energy resources.Conventional control approaches are plagued by challenges,including limited anti-interference capabilities and the insufficient generalization of decision-making experience.To address the intricate problem of directional well trajectory control,an intelligent algorithm design framework grounded in the high-level interaction mechanism between geology and engineering is put forward.This framework aims to facilitate the rapid batch migration and update of drilling strategies.The proposed directional well trajectory control method comprehensively considers the multi-source heterogeneous attributes of drilling experience data,leverages the generative simulation of the geological drilling environment,and promptly constructs a directional well trajectory control model with self-adaptive capabilities to environmental variations.This construction is carried out based on three hierarchical levels:“offline pre-drilling learning,online during-drilling interaction,and post-drilling model transfer”.Simulation results indicate that the guidance model derived from this method demonstrates remarkable generalization performance and accuracy.It can significantly boost the adaptability of the control algorithm to diverse environments and enhance the penetration rate of the target reservoir during drilling operations.
基金supported by a grant from the Research Grant Council of Hong Kong Special Administrative Region(Project No.11207724).
文摘The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.
基金supported by China Postdoctoral Science Foundation(2019M651240)National Natural Science Foundation of China(31670559).
文摘As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.
基金supported by a Major Research Project in Higher Education Institutions in Henan Province,with Project Number 23A560015.
文摘A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.
基金the National Natural Science Foundation of China(No.61861023)the Yunnan Fundamental Research Project(No.202301AT070452)。
文摘Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.