Using the tensor renormalization group method based on the higher-order singular value decomposition, we have studied the phase transitions of the five-state clock model on the square lattice. The temperature dependen...Using the tensor renormalization group method based on the higher-order singular value decomposition, we have studied the phase transitions of the five-state clock model on the square lattice. The temperature dependence of the specific heat indicates the system has two phase transitions, as verified clearly by the correlation function at three representative tem- peratures. By calculating the magnetic susceptibility, we obtained only the upper critical temperature as To2 = 0.9565(7). Investigating the fixed-point tensor, we precisely locate the transition temperatures at Tcl = 0.9029(1) and Tc2 = 0.9520(1), consistent well with the Monte Carlo and the density matrix renormalization group results.展开更多
Ephedra comprises approximately 50 species, which are roughly equally distributed between the Old and New World deserts, but not in the intervening regions (amphitropical range). Great heterogeneity in the substitut...Ephedra comprises approximately 50 species, which are roughly equally distributed between the Old and New World deserts, but not in the intervening regions (amphitropical range). Great heterogeneity in the substitution rates of Gnetales (Ephedra, Gnetum, and Welwitschia) has made it difficult to infer the ages of the major divergence events in Ephedra, such as the timing of the Beringian disjunction in the genus and the entry into South America. Here, we use data from as many Gnetales species and genes as available from GenBank and from a recent study to investigate the timing of the major divergence events. Because of the tradeoff between the amount of missing data and taxon/gene sampling, we reduced the initial matrix of 265 accessions and 12 loci to 95 accessions and 10 loci, and further to 42 species (and 7736 aligned nucleotides) to achieve stationary distributions in the Bayesian molecular clock runs. Results from a relaxed clock with an uncorrelated rates model and fossil-based calibration reveal that New World species are monophyletic and diverged from their mostly Asian sister clade some 30 mya, fitting with many other Beringian disjunctions. The split between the single North American and the single South American clade occurred approximately 25 mya, well before the closure of the Panamanian Isthmus. Overall, the biogeographic history of Ephedra appears dominated by long-distance dispersal, but finer-scale studies are needed to test this hypothesis.展开更多
Jujube fruit cracking has become a major concern in jujube production. It can affect fruit quality and yield and crop productivity, resulting in significant economic loss. Recent advances in jujube fruit cracking rese...Jujube fruit cracking has become a major concern in jujube production. It can affect fruit quality and yield and crop productivity, resulting in significant economic loss. Recent advances in jujube fruit cracking research provide opportunities to improve our understanding of the impacts of environmental factors and plant physiological metabolism on jujube fruit cracking. In this article, we have developed a novel systemic modeling software for jujube fruit cracking. The potential function and value of this modeling software are presented. Current issues and future research directions in the modeling of jujube fruit cracking system are also discussed. To our knowledge, this is the first functional and/or integrated modeling software developed for the management of jujube fruit cracking.展开更多
A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a...A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a clock and data recovery' circuit (CDR). Each sub-model is constructed based on the architecture of a circuit. The noise and jitter in each block such as shot noise, thermal noise, deterministic and random jitter are also considered. The performance of the whole receiver can be evaluated by the simulation of the behavior model, which is faster than the ordinary circuit model and more accurate than the analytical model. The whole model is implemented with C ++ and simulated in Microsoft Visual C ++ 6. 0. Using the Monte Carlo method, the EPON receiver is simulated. The simulation results show a good agreement with experimental ones.展开更多
A new prediction method based on the nonlinear autoregressive model is proposed to improve the accuracy of medium-term and long-term predictions of Satellite Clock Bias(SCB).Forecast experiments for three time periods...A new prediction method based on the nonlinear autoregressive model is proposed to improve the accuracy of medium-term and long-term predictions of Satellite Clock Bias(SCB).Forecast experiments for three time periods were implemented based on the precision SCB published on the International GNSS Server(IGS)server.The results show that the medium-term and long-term prediction accuracy of the proposed approach is significantly better compared to other traditional models,with the training time being much shorter than the wavelet neural network model.展开更多
Accurate estimation of clocks, for example for the Gravity Recovery And Climate Experiment(GRACE)twin-satellites, is a critical part of precise orbit determination(POD) that ensures temporal gravity inversion. Charact...Accurate estimation of clocks, for example for the Gravity Recovery And Climate Experiment(GRACE)twin-satellites, is a critical part of precise orbit determination(POD) that ensures temporal gravity inversion. Characterizing the periodic variations of the receiver clocks is critical for precise clock modeling and prediction. In this study, the receiver clock is estimated using two different POD procedure: kinematic and reduced-dynamic approaches. Choices and the number of orbital parameters estimated in POD process affect the clock estimates, e.g., there are 8895 and 34,560 total parameters in the reduced-dynamic and kinematic approaches, respectively. In the both cases, the periodic variations of GRACE receiver clock are mainly dominated by the GPS orbit period, as well as once-(1-pr) and twiceper-revolution(2-pr) effects. Here the 1-pr effect is coupled with the relativistic effect, resulting in a difficulty to separate both signals. The clock amplitudes caused by the GPS orbit period, 1-pr and 2-pr are about 0.1, 0.03 and 0.01 ns, respectively. The GPS orbit period is almost one order magnitude larger than the 1-and 2-pr effect. The 0.1-ns amplitude of the 12-h periodic variation is equivalent to a 3-cm error in range. Such a systematic error should be considered in the receiver clock modeling for both the improvement of positioning accuracy and the reduction of number of unknown parameters, if the precise point positioning(PPP) technique is used for the orbit determination of the GRACE.展开更多
Cyanobacteria are the simplest organisms to have circadian clocks.The central oscillator in cyanobacteria is composed by a transcriptional/translational feedback loop(TTFL)and a post-translational oscillator(PTO).The ...Cyanobacteria are the simplest organisms to have circadian clocks.The central oscillator in cyanobacteria is composed by a transcriptional/translational feedback loop(TTFL)and a post-translational oscillator(PTO).The PTO is a core pacemaker which consists of three proteins KaiA,KaiB and KaiC.KaiA stimulates the phosphorylation of KaiC,while KaiB inhibits the activity of KaiA.The cyanobacterial circadian clock is an interesting topic for researchers and many mathematical models have been constructed.However,the current mathematical models of the cyanobacterial circadian clock have been made only considering the interactions between Kai proteins.CikA,as an input pathway component,plays an essential role in the circadian clock,whose mutation results in abnormal rhythms.The regulation mechanism of CikA remains unclear.In this paper,we develop a detailed mathematical model for the cyanobacterial circadian clock with incorporation CikA-regulation.Based on numerical simulations,we explore the dynamic properties of the circadian clock regulated by CikA.The results show that the regulation of CikA makes the system more sensitive.In detail,CikA strengthens the central role of PTO and improves the adaptability of the circadian clock against the change of environment.With CikA,the system is able to modulate its period more easily to face environmental perturbation.CikA also enhances slightly the fitness of cyanobacteria.The findings of this paper can supplement the biological research and may help us more clearly understand the cyanobacterial circadian clock regulated by other proteins.展开更多
The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC....The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC.The phosphorylation/dephosphorylation state of KaiC exhibits a circadian oscillator.KaiA and KaiB activate KaiC phosphorylation and dephosphorylation respectively.CikA competing with KaiA for the same binding site on KaiB affects the phosphorylation state of KaiC.Quinone is a signaling molecule for entraining the cyanobacterial circadian clock which is oxidized at the onset of darkness and reduced at the onset of light,reflecting the environmental light-dark cycle.KaiA and CikA can sense external signals by detecting the oxidation state of quinone.However,the entrainment mechanism is far from clear.We develop an enhanced mathematical model including oxidized quinone sensed by KaiA and CikA,with which we present a detailed study on the entrainment of the cyanobacteria circadian clock induced by quinone signals.We find that KaiA and CikA sensing oxidized quinone pulse are related to phase advance and delay,respectively.The time of oxidized quinone pulse addition plays a key role in the phase shifts.The combination of KaiA and CikA is beneficial to the generation of entrainment,and the increase of signal intensity reduces the entrainment phase.This study provides a theoretical reference for biological research and helps us understand the dynamical mechanisms of cyanobacteria circadian clock.展开更多
In the cyber-physical environment,the clock synchronization algorithm is required to have better expansion for network scale.In this paper,a new measurement model of observability under the equivalent transformation o...In the cyber-physical environment,the clock synchronization algorithm is required to have better expansion for network scale.In this paper,a new measurement model of observability under the equivalent transformation of minimum mean square error(MMSE)is constructed based on basic measurement unit(BMU),which can realize the scaled expansion of MMSE measurement.Based on the state updating equation of absolute clock and the decoupled measurement model of MMSElike equivalence,which is proposed to calculate the positive definite invariant set by using the theoretical-practical Luenberger observer as the synthetical observer,the local noncooperative optimal control problem is built,and the clock synchronization system driven by the ideal state of local clock can reach the exponential convergence for synchronization performance.Different from the problem of general linear system regulators,the state estimation error and state control error are analyzed in the established affine system based on the set-theoryin-control to achieve the quantification of state deviation caused by noise interference.Based on the BMU for isomorphic state map,the synchronization performance of clock states between multiple sets of representative nodes is evaluated,and the scale of evaluated system can be still expanded.After the synchronization is completed,the state of perturbation system remains in the maximum range of measurement accuracy,and the state of nominal system can be stabilized at the ideal state for local clock and realizes the exponential convergence of the clock synchronization system.展开更多
As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which co...As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which combine compress technology in existence in order to settle datum redundancy in the course of temporal datum storage and temporal datum of slow acting domain and momentary acting domain are accessed by using each from independence clock method and mutual clock method .We also bring forward strategy of gridding storage to resolve the problems of temporal datum rising rapidly.展开更多
Phase locked loop(PLL) is a typical analog-digital mixed signal circuit and a method of conducting a top level system verification including PLL with standard digital simulator becomes especially significant.The behav...Phase locked loop(PLL) is a typical analog-digital mixed signal circuit and a method of conducting a top level system verification including PLL with standard digital simulator becomes especially significant.The behavioral level model(BLM) of the PLL in Verilog-HDL for pure digital simulator is innovated in this paper,and the design of PLL based clock and data recovery(CDR)circuit aided with jitter attenuation PLL for SerDes application is also presented.The CDR employs a dual-loop architecture where a frequency-locked loop acts as an acquisition aid to the phase-locked loop.To simultaneously meet jitter tolerance and jitter transfer specifications defined in G.8251 of optical transport network(ITU-T OTN),an additional jitter attenuation PLL is used.Simulation results show that the peak-to-peak jitter of the recovered clock and data is 5.17 ps and 2.3ps respectively.The core of the whole chip consumes 72 mA current from a 1.0V supply.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.531107040857)the Natural Science Foundation of Hunan Province,China(Grant No.851204035)the National Natural Science Foundation of China(Grant No.11774420)
文摘Using the tensor renormalization group method based on the higher-order singular value decomposition, we have studied the phase transitions of the five-state clock model on the square lattice. The temperature dependence of the specific heat indicates the system has two phase transitions, as verified clearly by the correlation function at three representative tem- peratures. By calculating the magnetic susceptibility, we obtained only the upper critical temperature as To2 = 0.9565(7). Investigating the fixed-point tensor, we precisely locate the transition temperatures at Tcl = 0.9029(1) and Tc2 = 0.9520(1), consistent well with the Monte Carlo and the density matrix renormalization group results.
基金supported,in part,by the National Science Foundation (USA)-Emerging Frontiers,Assembling the Tree of Life,Collaborative Research:Gymnosperms on the Tree of Life:Resolving the Phylogeny of Seed Plants (Grant No. EF-0629657 to SMI-B)supported by the Swedish Research Council (grants to CR)
文摘Ephedra comprises approximately 50 species, which are roughly equally distributed between the Old and New World deserts, but not in the intervening regions (amphitropical range). Great heterogeneity in the substitution rates of Gnetales (Ephedra, Gnetum, and Welwitschia) has made it difficult to infer the ages of the major divergence events in Ephedra, such as the timing of the Beringian disjunction in the genus and the entry into South America. Here, we use data from as many Gnetales species and genes as available from GenBank and from a recent study to investigate the timing of the major divergence events. Because of the tradeoff between the amount of missing data and taxon/gene sampling, we reduced the initial matrix of 265 accessions and 12 loci to 95 accessions and 10 loci, and further to 42 species (and 7736 aligned nucleotides) to achieve stationary distributions in the Bayesian molecular clock runs. Results from a relaxed clock with an uncorrelated rates model and fossil-based calibration reveal that New World species are monophyletic and diverged from their mostly Asian sister clade some 30 mya, fitting with many other Beringian disjunctions. The split between the single North American and the single South American clade occurred approximately 25 mya, well before the closure of the Panamanian Isthmus. Overall, the biogeographic history of Ephedra appears dominated by long-distance dispersal, but finer-scale studies are needed to test this hypothesis.
文摘Jujube fruit cracking has become a major concern in jujube production. It can affect fruit quality and yield and crop productivity, resulting in significant economic loss. Recent advances in jujube fruit cracking research provide opportunities to improve our understanding of the impacts of environmental factors and plant physiological metabolism on jujube fruit cracking. In this article, we have developed a novel systemic modeling software for jujube fruit cracking. The potential function and value of this modeling software are presented. Current issues and future research directions in the modeling of jujube fruit cracking system are also discussed. To our knowledge, this is the first functional and/or integrated modeling software developed for the management of jujube fruit cracking.
文摘A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a clock and data recovery' circuit (CDR). Each sub-model is constructed based on the architecture of a circuit. The noise and jitter in each block such as shot noise, thermal noise, deterministic and random jitter are also considered. The performance of the whole receiver can be evaluated by the simulation of the behavior model, which is faster than the ordinary circuit model and more accurate than the analytical model. The whole model is implemented with C ++ and simulated in Microsoft Visual C ++ 6. 0. Using the Monte Carlo method, the EPON receiver is simulated. The simulation results show a good agreement with experimental ones.
基金2022 Basic Scientific Research Project supported by Liaoning Provincial Education Department(No.LJKMZ20221686)。
文摘A new prediction method based on the nonlinear autoregressive model is proposed to improve the accuracy of medium-term and long-term predictions of Satellite Clock Bias(SCB).Forecast experiments for three time periods were implemented based on the precision SCB published on the International GNSS Server(IGS)server.The results show that the medium-term and long-term prediction accuracy of the proposed approach is significantly better compared to other traditional models,with the training time being much shorter than the wavelet neural network model.
基金funded by the Ministry of Science and Technology of Taiwan, under grant numbers 103-2116-M-008-014
文摘Accurate estimation of clocks, for example for the Gravity Recovery And Climate Experiment(GRACE)twin-satellites, is a critical part of precise orbit determination(POD) that ensures temporal gravity inversion. Characterizing the periodic variations of the receiver clocks is critical for precise clock modeling and prediction. In this study, the receiver clock is estimated using two different POD procedure: kinematic and reduced-dynamic approaches. Choices and the number of orbital parameters estimated in POD process affect the clock estimates, e.g., there are 8895 and 34,560 total parameters in the reduced-dynamic and kinematic approaches, respectively. In the both cases, the periodic variations of GRACE receiver clock are mainly dominated by the GPS orbit period, as well as once-(1-pr) and twiceper-revolution(2-pr) effects. Here the 1-pr effect is coupled with the relativistic effect, resulting in a difficulty to separate both signals. The clock amplitudes caused by the GPS orbit period, 1-pr and 2-pr are about 0.1, 0.03 and 0.01 ns, respectively. The GPS orbit period is almost one order magnitude larger than the 1-and 2-pr effect. The 0.1-ns amplitude of the 12-h periodic variation is equivalent to a 3-cm error in range. Such a systematic error should be considered in the receiver clock modeling for both the improvement of positioning accuracy and the reduction of number of unknown parameters, if the precise point positioning(PPP) technique is used for the orbit determination of the GRACE.
基金supported by the National Natural Science Foundation of China(Grant No.11672177).
文摘Cyanobacteria are the simplest organisms to have circadian clocks.The central oscillator in cyanobacteria is composed by a transcriptional/translational feedback loop(TTFL)and a post-translational oscillator(PTO).The PTO is a core pacemaker which consists of three proteins KaiA,KaiB and KaiC.KaiA stimulates the phosphorylation of KaiC,while KaiB inhibits the activity of KaiA.The cyanobacterial circadian clock is an interesting topic for researchers and many mathematical models have been constructed.However,the current mathematical models of the cyanobacterial circadian clock have been made only considering the interactions between Kai proteins.CikA,as an input pathway component,plays an essential role in the circadian clock,whose mutation results in abnormal rhythms.The regulation mechanism of CikA remains unclear.In this paper,we develop a detailed mathematical model for the cyanobacterial circadian clock with incorporation CikA-regulation.Based on numerical simulations,we explore the dynamic properties of the circadian clock regulated by CikA.The results show that the regulation of CikA makes the system more sensitive.In detail,CikA strengthens the central role of PTO and improves the adaptability of the circadian clock against the change of environment.With CikA,the system is able to modulate its period more easily to face environmental perturbation.CikA also enhances slightly the fitness of cyanobacteria.The findings of this paper can supplement the biological research and may help us more clearly understand the cyanobacterial circadian clock regulated by other proteins.
基金Project supported by the National Natural Science Foundation of China(Grant No.11672177).
文摘The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC.The phosphorylation/dephosphorylation state of KaiC exhibits a circadian oscillator.KaiA and KaiB activate KaiC phosphorylation and dephosphorylation respectively.CikA competing with KaiA for the same binding site on KaiB affects the phosphorylation state of KaiC.Quinone is a signaling molecule for entraining the cyanobacterial circadian clock which is oxidized at the onset of darkness and reduced at the onset of light,reflecting the environmental light-dark cycle.KaiA and CikA can sense external signals by detecting the oxidation state of quinone.However,the entrainment mechanism is far from clear.We develop an enhanced mathematical model including oxidized quinone sensed by KaiA and CikA,with which we present a detailed study on the entrainment of the cyanobacteria circadian clock induced by quinone signals.We find that KaiA and CikA sensing oxidized quinone pulse are related to phase advance and delay,respectively.The time of oxidized quinone pulse addition plays a key role in the phase shifts.The combination of KaiA and CikA is beneficial to the generation of entrainment,and the increase of signal intensity reduces the entrainment phase.This study provides a theoretical reference for biological research and helps us understand the dynamical mechanisms of cyanobacteria circadian clock.
基金supported by the National Natural Science Foundation of China(61972061,61403055,51705059,51605065)the Chongqing Science and Technology Commission(2017jcyjAX0453,cstc2018jcyjAX0691,cstc2018jcyjAX0139)+2 种基金the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJQN201800645)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K201900604)the Chongqing Education Administration Program Foundation of China(KJ1600402)。
文摘In the cyber-physical environment,the clock synchronization algorithm is required to have better expansion for network scale.In this paper,a new measurement model of observability under the equivalent transformation of minimum mean square error(MMSE)is constructed based on basic measurement unit(BMU),which can realize the scaled expansion of MMSE measurement.Based on the state updating equation of absolute clock and the decoupled measurement model of MMSElike equivalence,which is proposed to calculate the positive definite invariant set by using the theoretical-practical Luenberger observer as the synthetical observer,the local noncooperative optimal control problem is built,and the clock synchronization system driven by the ideal state of local clock can reach the exponential convergence for synchronization performance.Different from the problem of general linear system regulators,the state estimation error and state control error are analyzed in the established affine system based on the set-theoryin-control to achieve the quantification of state deviation caused by noise interference.Based on the BMU for isomorphic state map,the synchronization performance of clock states between multiple sets of representative nodes is evaluated,and the scale of evaluated system can be still expanded.After the synchronization is completed,the state of perturbation system remains in the maximum range of measurement accuracy,and the state of nominal system can be stabilized at the ideal state for local clock and realizes the exponential convergence of the clock synchronization system.
文摘As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which combine compress technology in existence in order to settle datum redundancy in the course of temporal datum storage and temporal datum of slow acting domain and momentary acting domain are accessed by using each from independence clock method and mutual clock method .We also bring forward strategy of gridding storage to resolve the problems of temporal datum rising rapidly.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA010301)the Research Foundation of Zhongxing Telecom Equipment Corporation and the National Natural Science Foundation of China(No.60976029)
文摘Phase locked loop(PLL) is a typical analog-digital mixed signal circuit and a method of conducting a top level system verification including PLL with standard digital simulator becomes especially significant.The behavioral level model(BLM) of the PLL in Verilog-HDL for pure digital simulator is innovated in this paper,and the design of PLL based clock and data recovery(CDR)circuit aided with jitter attenuation PLL for SerDes application is also presented.The CDR employs a dual-loop architecture where a frequency-locked loop acts as an acquisition aid to the phase-locked loop.To simultaneously meet jitter tolerance and jitter transfer specifications defined in G.8251 of optical transport network(ITU-T OTN),an additional jitter attenuation PLL is used.Simulation results show that the peak-to-peak jitter of the recovered clock and data is 5.17 ps and 2.3ps respectively.The core of the whole chip consumes 72 mA current from a 1.0V supply.