The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
In this paper,new SVPWM switching sequences for six-phase asymmetrical induction motor drives are derived with the aim to reduce inverter’s switching losses.Total three switching sequences are introduced in this pape...In this paper,new SVPWM switching sequences for six-phase asymmetrical induction motor drives are derived with the aim to reduce inverter’s switching losses.Total three switching sequences are introduced in this paper.These sequences are derived such that the phases get continuously clamped when a current of the phases is around its peak magnitude and hence reduced switching losses are recorded.The comparative performances of these modulation techniques are studied with two existing switching sequences.Simulation,analytical and experimental results are presented.Based on these results,it is found that new switching sequences reduce switching losses effectively in dual three phase inverters.展开更多
In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much ...In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault.展开更多
This paper deals a detailed performance investigation of asymmetrical six-phase grid connected induction generator(GCIG)in two proposed configurations in variable speed operation.During the system development,regulati...This paper deals a detailed performance investigation of asymmetrical six-phase grid connected induction generator(GCIG)in two proposed configurations in variable speed operation.During the system development,regulation of DC-link voltage has been proposed using particle swarm optimization(PSO)based PI controller,ensuring the power flow to utility grid through back to back converters.The closed loop operation of asymmetrical six-phase GCIG using indirect field oriented control in different configurations has been carried out in Matlab/Simulink environment.Analytical results have been verified using real time test results on virtual platform of Typhoon HIL supported with some experimental validation.展开更多
This paper proposes a novel control approach for fault-tolerant control of dual three-phase permanent magnet synchronous motor(PMSM) under one-phase open-circuit fault.A modified six-phase static coordinate transforma...This paper proposes a novel control approach for fault-tolerant control of dual three-phase permanent magnet synchronous motor(PMSM) under one-phase open-circuit fault.A modified six-phase static coordinate transformation matrix and an extended rotating coordinate transformation matrix are investigated considering the influence of the fifth harmonic space on fault-tolerant control. These mathematical models are further analyzed in the fundamental space and the fifth harmonic space after the fault and to eliminate the coupling between the d-q axis voltage equation in the fundamental wave space and the d-q axis voltage equation in the fifth harmonic space, a secondary rotation coordinate transformation matrix is proposed. To achieve the purpose of reducing torque ripple, the fault-tolerant control method proposed in this paper not only takes the minimum copper loss as the constraint condition, but also injects the fifth harmonic current. The experimental result of current and torque is used to verify the accuracy of fault-tolerant control.展开更多
In this paper,the torque ripple problem of six-phase asymmetrical brushless DC motor(BLDCM)is studied.First,the basic structure of BLDCM is introduced,and the operation principle of six-phase asymmetrical BLDCM that i...In this paper,the torque ripple problem of six-phase asymmetrical brushless DC motor(BLDCM)is studied.First,the basic structure of BLDCM is introduced,and the operation principle of six-phase asymmetrical BLDCM that is studied in the thesis is expounded.Then,the principle of direct torque control(DTC)system of BLDCM is also discussed,and the improved system is proposed,including using the torque hysteresis loop and opening current hysteresis loop,and choosing the improved voltage vector to make the PWM-ON-PWM modulation.Finally,the DTC system simulation model is built,and the system is also tested by the experiment.According to the results of experiment and simulation,the DTC system designed in this thesis can control the six-phase asymmetrical BLDCM stably and reliably,and the problem of high frequency and torque ripple is solved well.展开更多
A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pe...A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.展开更多
The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a cu...The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a current vector decoupling control algorithm for six-phase permanent magnet synchronous motor (PMSM) is designed. Using the proposed synchronous rotating coordinate transformation matrix, the fundamental and harmonic components in d-q subspace are changed into direct current (DC) component, only using the traditional proportional integral (PI) controller can meet the non-static difference adjustment, and the controller parameter design method is given by employing intemal model principle. In addition, in order to remove the 5th and 7th harmonic components of stator current, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific harmonic component compensation. Simulation results verify the effectiveness of current decoupling vector controller.展开更多
A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole ...A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.展开更多
Sr, Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths from Hannuoba Basalts in five-dimensional space are studied. Combined with the distribution of xenoliths, it is suggested that the isotopic ...Sr, Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths from Hannuoba Basalts in five-dimensional space are studied. Combined with the distribution of xenoliths, it is suggested that the isotopic relationship between various xenoliths can be well explained by the processes of delamination.展开更多
Small signal stability analysis is conducted for an asymmetrical six-phase synchronous motor in comparison with its equivalent three-phase counterpart.For this purpose,a linearized model of the six-phase synchronous m...Small signal stability analysis is conducted for an asymmetrical six-phase synchronous motor in comparison with its equivalent three-phase counterpart.For this purpose,a linearized model of the six-phase synchronous motor is developed using the dq0 approach,which is used in eigenvalue criteria to determine absolute stability in comparison with its equivalent three-phase counterpart.The analysis includes a comparison of the variation in evaluated eigenvalues associated with the stator and rotor sides according to changes in both the three and six-phase machine parameters and working conditions.Key analytical results are experimentally investigated and validated on a test rig.展开更多
Multi-phase machines(more than three-phase)are rigorously being investigated for various high power applications due to their increased power to weight ratio,increased frequency and reduced magnitude of torque pulsati...Multi-phase machines(more than three-phase)are rigorously being investigated for various high power applications due to their increased power to weight ratio,increased frequency and reduced magnitude of torque pulsation,and fault tolerant characteristics.Fault analysis of a system is extremely important,not only to understand its operating characteristic,but it is also required prior to the design of suitable control/protective scheme.Therefore,the aim of this paper is not to devise a new mathematical model and control algorithm,but to investigate the behavior of six-phase synchronous motor(SPSM)under fault conditions caused by open circuit(OC)and short circuit(SC)at its input terminals as that has not been reported so far.Some key analytical results have been experimentally verified.展开更多
Owing to the increasing worldwide demand for natural gas,the development of a large submerged combustion vaporizer is required.Its burner is equipped with a water spray nozzle to reduce nitrogen oxides,and a practi-ca...Owing to the increasing worldwide demand for natural gas,the development of a large submerged combustion vaporizer is required.Its burner is equipped with a water spray nozzle to reduce nitrogen oxides,and a practi-cal simulation method is required for the optimal design.The non-adiabatic flamelet approach can predict the combustion emissions and is useful for reducing simulation costs.However,as the number of control variables increases,the database requires larger memory and cannot be dealt with by general computers.In this study,an artificial neural network(ANN)model based on a five-dimensional flamelet database,which includes the effects of heat loss and vapor concentration by sprayed water evaporation,is developed.Furthermore,large eddy sim-ulations(LESs)for turbulent combustion fields with and without water spray are conducted employing flamelet generated manifold(FGM)approach with this ANN model,and the validity is investigated.For comparison,a lab-scale burner equipped with a water spray nozzle is manufactured,and combustion experiments with and without water spray are conducted.The results show that CO,NO,temperature,and reaction rate of progress variable predicted by the present ANN model are in good agreement with those of a five-dimensional flamelet database.In the condition without water spray,the flame behavior predicted by the LES employing the FGM/ANN ap-proach is in good agreement with that employing the conventional FGM approach,while indicating much lower memory,although there appeared some quantitative discrepancies in the temperature against the experiment probably partially because of the insufficiency of the FGM approach for the present complex flame structure.In the condition with water spray,the LES employing the FGM/ANN approach is able to capture the effect of the water spray on the flame behavior in the experiment,such that the water spray decreases the temperature,which causes the decrease in NO but increase in CO.展开更多
The author uses a low temperature and low entropy pre inflation state to create a bridge between String theory and loop quantum gravity. We use this analysis in lieu of the CMB barrier as of z = 1000 since it is our w...The author uses a low temperature and low entropy pre inflation state to create a bridge between String theory and loop quantum gravity. We use this analysis in lieu of the CMB barrier as of z = 1000 since it is our way to come up with a working model of quintessence scalar fields, which permits relic generation of dark matter and dark energy. Not only referencing this bridge, we do it in such a way as to utilize the low entropy condition which the Brane world model of Randal and Sundrum creates, and to show how it is in common with what Caroll and Chen wrote up in 2005., i.e. when the universe was about 1000 times smaller and 100,000 times younger than today.展开更多
In 2003, Guth posed the following question in a KITP seminar in UCSB. Namely “Even if there exist 101000 vacuum states produced by String theory, does inflation produce overwhelmingly one preferred type of vacuum sta...In 2003, Guth posed the following question in a KITP seminar in UCSB. Namely “Even if there exist 101000 vacuum states produced by String theory, does inflation produce overwhelmingly one preferred type of vacuum states over the other possible types of vacuum states”? This document tries to answer how a preferred vacuum state could be produced, and by what sort of process. We construct a di quark condensate leading to a cosmological constant in line with known physical observations. We use a phase transition bridge from a tilted washboard potential to the chaotic inflationary model pioneered by Guth which is congruent with the slow roll criteria. This permits criteria for initiation of graviton production from a domain wall formed after a transition to a chaotic inflationary potential. It also permits investigation of if or not axion wall contributions to inflation are necessary. If we reject an explicit axion mass drop off to infinitesimal values at high temperatures, we may use the Bogomolnyi inequality to rescale and reset initial conditions for the chaotic inflationary potential. Then the Randall-Sundrum brane world effective potential delineates the end of the dominant role of di quarks, and the beginning of inflation. And perhaps answers Freeman Dysons contention that Graviton production is unlikely given present astrophysical constraints upon detector systems. We end this with a description in the last appendix entry, Appendix VI, as to why, given the emphasis upon di quarks, as to the usefulness of using times before Planck time interval as to modeling our physical system and its importance as to emergent field structures used for cosmological modeling.展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
A theory of(N+1)-dimensional gravity is developed on the basis of the teleparallel equivalent of general relativity(TEGR).The fundamental gravitational field variables are the(N+1)-dimensional vector fields,de...A theory of(N+1)-dimensional gravity is developed on the basis of the teleparallel equivalent of general relativity(TEGR).The fundamental gravitational field variables are the(N+1)-dimensional vector fields,defined globally on a manifold M,and the gravitational field is attributed to the torsion.The form of Lagrangian density is quadratic in torsion tensor.We then give an exact five-dimensional spherically symmetric solution(Schwarzschild(4+1)-dimensions).Finally,we calculate energy and spatial momentum using gravitational energy-momentum tensor and superpotential 2-form.展开更多
This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network ev...This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.展开更多
The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Ham...The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom,with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes.The microscopic potential energy surfaces,together with the characteristic collective observables,illustrate a rapid transition from near spherical shape at the N = 40 subshell,to γ-soft deformed shapes for lighter isotopes.The calculated spectra display fingerprints of a second-order shape phase transition that can be approximately described by the E(5) analytic solution.展开更多
The years we are experiencing are often identified as those of the age of digital technologies,where“digital”is commonly associated with intelligence,efficiency,and convenience.The emergence of digital technologies ...The years we are experiencing are often identified as those of the age of digital technologies,where“digital”is commonly associated with intelligence,efficiency,and convenience.The emergence of digital technologies has significantly impacted and transformed various aspects of our society compared to the past.In this panorama,some arising questions regard transportation infrastructure systems and,first of all,highway infrastructure.This research focuses on one central issue:how highways fit into this digital revolution.Actually,the work in this paper can be described as follows.Although there are many different theoretical model systems for the architecture of the digital twin,we have chosen to review the main body of research on the digital twin in highway infrastructure based on a relatively well-established modeling framework,the five-dimensional model of the digital twin.After discussing the components of the digital twin for highway infrastructure's five-dimensional model,the paper reviews some innovative technologies that make these items effective.In addition to this,the digital twin maturity level of highway infrastructure and the MBSE-based(model-based systems engineering)digital twin model for highway are also discussed in this paper.Therefore,the paper provides a bird's eye view of this extremely dynamic technology for a new system of intelligent highways and discusses some of their criticalities and strengths,allowing for the optimization and development of new transportation functions and services,improving the adaptability of highways to the digital revolution.展开更多
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
文摘In this paper,new SVPWM switching sequences for six-phase asymmetrical induction motor drives are derived with the aim to reduce inverter’s switching losses.Total three switching sequences are introduced in this paper.These sequences are derived such that the phases get continuously clamped when a current of the phases is around its peak magnitude and hence reduced switching losses are recorded.The comparative performances of these modulation techniques are studied with two existing switching sequences.Simulation,analytical and experimental results are presented.Based on these results,it is found that new switching sequences reduce switching losses effectively in dual three phase inverters.
文摘In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault.
文摘This paper deals a detailed performance investigation of asymmetrical six-phase grid connected induction generator(GCIG)in two proposed configurations in variable speed operation.During the system development,regulation of DC-link voltage has been proposed using particle swarm optimization(PSO)based PI controller,ensuring the power flow to utility grid through back to back converters.The closed loop operation of asymmetrical six-phase GCIG using indirect field oriented control in different configurations has been carried out in Matlab/Simulink environment.Analytical results have been verified using real time test results on virtual platform of Typhoon HIL supported with some experimental validation.
基金supported by the National Natural Science Foundation of China under Grant 61603263。
文摘This paper proposes a novel control approach for fault-tolerant control of dual three-phase permanent magnet synchronous motor(PMSM) under one-phase open-circuit fault.A modified six-phase static coordinate transformation matrix and an extended rotating coordinate transformation matrix are investigated considering the influence of the fifth harmonic space on fault-tolerant control. These mathematical models are further analyzed in the fundamental space and the fifth harmonic space after the fault and to eliminate the coupling between the d-q axis voltage equation in the fundamental wave space and the d-q axis voltage equation in the fifth harmonic space, a secondary rotation coordinate transformation matrix is proposed. To achieve the purpose of reducing torque ripple, the fault-tolerant control method proposed in this paper not only takes the minimum copper loss as the constraint condition, but also injects the fifth harmonic current. The experimental result of current and torque is used to verify the accuracy of fault-tolerant control.
基金This work was supported in part by the National Natural Science Foundation of China under Grant61773006。
文摘In this paper,the torque ripple problem of six-phase asymmetrical brushless DC motor(BLDCM)is studied.First,the basic structure of BLDCM is introduced,and the operation principle of six-phase asymmetrical BLDCM that is studied in the thesis is expounded.Then,the principle of direct torque control(DTC)system of BLDCM is also discussed,and the improved system is proposed,including using the torque hysteresis loop and opening current hysteresis loop,and choosing the improved voltage vector to make the PWM-ON-PWM modulation.Finally,the DTC system simulation model is built,and the system is also tested by the experiment.According to the results of experiment and simulation,the DTC system designed in this thesis can control the six-phase asymmetrical BLDCM stably and reliably,and the problem of high frequency and torque ripple is solved well.
文摘A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.
基金Project(51507188)supported by the National Natural Science Foundation of China
文摘The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a current vector decoupling control algorithm for six-phase permanent magnet synchronous motor (PMSM) is designed. Using the proposed synchronous rotating coordinate transformation matrix, the fundamental and harmonic components in d-q subspace are changed into direct current (DC) component, only using the traditional proportional integral (PI) controller can meet the non-static difference adjustment, and the controller parameter design method is given by employing intemal model principle. In addition, in order to remove the 5th and 7th harmonic components of stator current, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific harmonic component compensation. Simulation results verify the effectiveness of current decoupling vector controller.
文摘A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.
文摘Sr, Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths from Hannuoba Basalts in five-dimensional space are studied. Combined with the distribution of xenoliths, it is suggested that the isotopic relationship between various xenoliths can be well explained by the processes of delamination.
文摘Small signal stability analysis is conducted for an asymmetrical six-phase synchronous motor in comparison with its equivalent three-phase counterpart.For this purpose,a linearized model of the six-phase synchronous motor is developed using the dq0 approach,which is used in eigenvalue criteria to determine absolute stability in comparison with its equivalent three-phase counterpart.The analysis includes a comparison of the variation in evaluated eigenvalues associated with the stator and rotor sides according to changes in both the three and six-phase machine parameters and working conditions.Key analytical results are experimentally investigated and validated on a test rig.
文摘Multi-phase machines(more than three-phase)are rigorously being investigated for various high power applications due to their increased power to weight ratio,increased frequency and reduced magnitude of torque pulsation,and fault tolerant characteristics.Fault analysis of a system is extremely important,not only to understand its operating characteristic,but it is also required prior to the design of suitable control/protective scheme.Therefore,the aim of this paper is not to devise a new mathematical model and control algorithm,but to investigate the behavior of six-phase synchronous motor(SPSM)under fault conditions caused by open circuit(OC)and short circuit(SC)at its input terminals as that has not been reported so far.Some key analytical results have been experimentally verified.
基金The temperature measurements and PIA were supported by Prof.M.Nishioka of University of Tsukuba and Prof.K.Nishino of Yokohama National University,respectively.This work was partially supported by MEXT as"Program for Promoting Researches on the Supercomputer Fu-gaku"(Digital Twins of Real World’s Clean Energy Systems with Inte-grated Utilization of Super-simulation and AI).
文摘Owing to the increasing worldwide demand for natural gas,the development of a large submerged combustion vaporizer is required.Its burner is equipped with a water spray nozzle to reduce nitrogen oxides,and a practi-cal simulation method is required for the optimal design.The non-adiabatic flamelet approach can predict the combustion emissions and is useful for reducing simulation costs.However,as the number of control variables increases,the database requires larger memory and cannot be dealt with by general computers.In this study,an artificial neural network(ANN)model based on a five-dimensional flamelet database,which includes the effects of heat loss and vapor concentration by sprayed water evaporation,is developed.Furthermore,large eddy sim-ulations(LESs)for turbulent combustion fields with and without water spray are conducted employing flamelet generated manifold(FGM)approach with this ANN model,and the validity is investigated.For comparison,a lab-scale burner equipped with a water spray nozzle is manufactured,and combustion experiments with and without water spray are conducted.The results show that CO,NO,temperature,and reaction rate of progress variable predicted by the present ANN model are in good agreement with those of a five-dimensional flamelet database.In the condition without water spray,the flame behavior predicted by the LES employing the FGM/ANN ap-proach is in good agreement with that employing the conventional FGM approach,while indicating much lower memory,although there appeared some quantitative discrepancies in the temperature against the experiment probably partially because of the insufficiency of the FGM approach for the present complex flame structure.In the condition with water spray,the LES employing the FGM/ANN approach is able to capture the effect of the water spray on the flame behavior in the experiment,such that the water spray decreases the temperature,which causes the decrease in NO but increase in CO.
文摘The author uses a low temperature and low entropy pre inflation state to create a bridge between String theory and loop quantum gravity. We use this analysis in lieu of the CMB barrier as of z = 1000 since it is our way to come up with a working model of quintessence scalar fields, which permits relic generation of dark matter and dark energy. Not only referencing this bridge, we do it in such a way as to utilize the low entropy condition which the Brane world model of Randal and Sundrum creates, and to show how it is in common with what Caroll and Chen wrote up in 2005., i.e. when the universe was about 1000 times smaller and 100,000 times younger than today.
文摘In 2003, Guth posed the following question in a KITP seminar in UCSB. Namely “Even if there exist 101000 vacuum states produced by String theory, does inflation produce overwhelmingly one preferred type of vacuum states over the other possible types of vacuum states”? This document tries to answer how a preferred vacuum state could be produced, and by what sort of process. We construct a di quark condensate leading to a cosmological constant in line with known physical observations. We use a phase transition bridge from a tilted washboard potential to the chaotic inflationary model pioneered by Guth which is congruent with the slow roll criteria. This permits criteria for initiation of graviton production from a domain wall formed after a transition to a chaotic inflationary potential. It also permits investigation of if or not axion wall contributions to inflation are necessary. If we reject an explicit axion mass drop off to infinitesimal values at high temperatures, we may use the Bogomolnyi inequality to rescale and reset initial conditions for the chaotic inflationary potential. Then the Randall-Sundrum brane world effective potential delineates the end of the dominant role of di quarks, and the beginning of inflation. And perhaps answers Freeman Dysons contention that Graviton production is unlikely given present astrophysical constraints upon detector systems. We end this with a description in the last appendix entry, Appendix VI, as to why, given the emphasis upon di quarks, as to the usefulness of using times before Planck time interval as to modeling our physical system and its importance as to emergent field structures used for cosmological modeling.
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
文摘A theory of(N+1)-dimensional gravity is developed on the basis of the teleparallel equivalent of general relativity(TEGR).The fundamental gravitational field variables are the(N+1)-dimensional vector fields,defined globally on a manifold M,and the gravitational field is attributed to the torsion.The form of Lagrangian density is quadratic in torsion tensor.We then give an exact five-dimensional spherically symmetric solution(Schwarzschild(4+1)-dimensions).Finally,we calculate energy and spatial momentum using gravitational energy-momentum tensor and superpotential 2-form.
基金"973"National Key Basic Research & Development Program "Research of the Basic Scientific Issues in the Traffic Congestion Bottlenecks of Big Cities"( No. 2006CB705500)Beijing Science & Technology Program "Research of the New Data Collection Technologies for Transportation Management " (No.D101100049710004)Beijing Science & Technology Program "Research of the Demonstration Platform for the In-tegrated Dynamic Operation Analysis of City Road Networks"(No. D07050600440704)
文摘This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.
基金supported in part by the Major State Basic Research Developing Program (Grant No 2007CB815000)the National Natural Science Foundation of China (Grant Nos 11005004, 10775004 and 10975008)+1 种基金the Southwest University Initial Research Foundation Grant to Doctor (Grant No.SWU110039)MZOS (Grant No 1191005-1010)
文摘The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom,with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes.The microscopic potential energy surfaces,together with the characteristic collective observables,illustrate a rapid transition from near spherical shape at the N = 40 subshell,to γ-soft deformed shapes for lighter isotopes.The calculated spectra display fingerprints of a second-order shape phase transition that can be approximately described by the E(5) analytic solution.
基金supported by National Key Research and Development Program of China(2020YFC1512000)Transportation Science and Technology Research Project of Hebei Province(JX-202006)Natural Science Research Program of Shaanxi Province(2020JQ-360).
文摘The years we are experiencing are often identified as those of the age of digital technologies,where“digital”is commonly associated with intelligence,efficiency,and convenience.The emergence of digital technologies has significantly impacted and transformed various aspects of our society compared to the past.In this panorama,some arising questions regard transportation infrastructure systems and,first of all,highway infrastructure.This research focuses on one central issue:how highways fit into this digital revolution.Actually,the work in this paper can be described as follows.Although there are many different theoretical model systems for the architecture of the digital twin,we have chosen to review the main body of research on the digital twin in highway infrastructure based on a relatively well-established modeling framework,the five-dimensional model of the digital twin.After discussing the components of the digital twin for highway infrastructure's five-dimensional model,the paper reviews some innovative technologies that make these items effective.In addition to this,the digital twin maturity level of highway infrastructure and the MBSE-based(model-based systems engineering)digital twin model for highway are also discussed in this paper.Therefore,the paper provides a bird's eye view of this extremely dynamic technology for a new system of intelligent highways and discusses some of their criticalities and strengths,allowing for the optimization and development of new transportation functions and services,improving the adaptability of highways to the digital revolution.