期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation
1
作者 Xiaojian LIU Ao JIAO +7 位作者 Yang WANG Guodong YI Xiangyu GAO Xiaochen ZHANG Yiming ZHANG Yangjian JI Shuyou ZHANG Jianrong TAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第7期635-651,共17页
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th... Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies. 展开更多
关键词 five-axis machine tool Accuracy allocation Geometric error modeling Error cost sensitivity Tool direction deviation priority
原文传递
PLANNING METHOD OF TOOL ORIENTATION IN FIVE-AXIS NC MACHINING
2
作者 姬俊锋 周来水 +1 位作者 安鲁陵 张森棠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期83-88,共6页
The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by int... The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality. 展开更多
关键词 computer aided mamufacturing NC machining TOOLS five-axis
在线阅读 下载PDF
Five-axis flank milling tool path generation with curvature continuity and smooth cutting force for pockets 被引量:5
3
作者 Changqing LIU Yingguang LI +1 位作者 Xin JIANG Wenyao SHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第2期730-739,共10页
In order to ensure machining stability,curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools.For five-axis flank milling,i... In order to ensure machining stability,curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools.For five-axis flank milling,it is difficult to meet both of the constraints because tool path points and tool axis vectors interact with each other.In this paper,multiple relationships between tool path points and tool axis vectors with cutting force and kinematics of machine tools are established,and the strategies of corner-looping milling and clothoidal spirals are combined so as to find feasible solutions under both of the constraints.Tool path parameters are iterated by considering the maximum cutting force and the feasible range of the tool axis vector,and eventually a curvature continuity five-axis flank milling tool path with smooth cutting force is generated.Machining experimental results show that the conditions of cutting force are satisfied,vibration during the process of machining is reduced,and the machining quality of the surface is improved. 展开更多
关键词 CURVATURE CONTINUITY Cutting force five-axis FLANK MILLING Machining Tool path generation
原文传递
Design and implementation of five-axis transformation function in CNC system 被引量:6
4
作者 Wang Feng Lin Hu +3 位作者 Zheng Liaomo Yang Lei Feng Jinjin Zhang Han 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期425-437,共13页
To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC syst... To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle- tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control) and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software struc- ture, the instructions with respect to the cutter's position and orientation can be directly carried out in the CNC system. 展开更多
关键词 3D cutter radiuscompensation CNC software structure five-axis transformationfunction Motion control Rotation tool center pointcontrol
原文传递
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool 被引量:6
5
作者 Qianjian GUO Shuo FAN +3 位作者 Rufeng XU Xiang CHENG Guoyong ZHAO Jianguo YANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期746-753,共8页
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea... Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools. 展开更多
关键词 five-axis machine tool Artificial bee colony Thermal error modeling Artificial neural network
在线阅读 下载PDF
Design and development of a five-axis machine tool with high accuracy,stiffness and efficiency for aero-engine casing manufacturing 被引量:4
6
作者 Yutian WANG Dong WANG +3 位作者 Shizhen ZHANG Zihan TANG Liping WANG Yanmin LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期485-496,共12页
In order to satisfy the machining requirements of aero-engine casing in modern aviation industry, this paper investigates three main issues during the design and development process of a five-axis machine tool with hi... In order to satisfy the machining requirements of aero-engine casing in modern aviation industry, this paper investigates three main issues during the design and development process of a five-axis machine tool with high accuracy, stiffness and efficiency, including whole structure design,key components design, and supporting stiffness design. First, an appropriate structure of five-axis machine tool is determined considering the processing characteristics of aero-engine casing. Then, a dual drive swing head and a compact motorized spindle are designed with enough drive capability and stiffness, and related structure, assembly method, cooling technology, and performance simulation are given in detail. Next, a design method of supporting stiffness of guide is proposed through the deformation prediction of the spindle end. Based on above work, a prototype of machine tool is developed, and some experiments are carried out, including performance tests of swing head and motorized spindle, and machining of a simulated workpiece of aero-engine casing. All experimental results show that the machine tool has satisfactory accuracy, stiffness and efficiency, which meets the machining requirements of aero-engine casing. The main work can be used as references for engineers and technicians, which are meaningful in practice. 展开更多
关键词 Aero-engine casing manufacturing Compact motorized spindle Dual drive swing head five-axis machine tool Supporting stiffness
原文传递
Identification of Kinematic Errors of Five-axis Machine Tool Trunnion Axis from Finished Test Piece 被引量:3
7
作者 ZHANG Ya FU Jianzhong CHEN Zichen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期999-1007,共9页
Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and c... Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool. 展开更多
关键词 five-axis machine tool kinematic errors trunnion axis test piece error-sensitive directions
在线阅读 下载PDF
Elliptical model for surface topography prediction in five-axis flank milling 被引量:3
8
作者 Liping WANG Shuyi GE +3 位作者 Hao SIa Liwen GUAN Feiyu DUAN Yuzhe LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第4期1361-1374,共14页
In five-axis flank milling operations,the intersecting surfaces of different cutting edges create roughness on the milled surfaces that cannot be ignored in situations with strict requirements,especially in aeronautic... In five-axis flank milling operations,the intersecting surfaces of different cutting edges create roughness on the milled surfaces that cannot be ignored in situations with strict requirements,especially in aeronautical manufacturing.To focus on motion problems in milling operations,this paper presents a new model that utilizes elliptical paths as cutting edge trajectories on 3D surface topography machined by peripheral milling.First,the cutter parallel axis offset and location angle are considered,which change the location of the ellipse center and intersection point of the cutting edges.Then,through the proposed model,the predicted surface topography is obtained,and the factors that affect the development tendency of roughness are analyzed.Next,the effects of the cutter location position(CLP)geometric parameters,cutter parallel axis offset and curvature on the roughness are evaluated by a numerical simulation.Finally,machining tests are carried out to validate the model predictions,and the results show that the surface topography predictions correspond well with the experimental results. 展开更多
关键词 Cutter runout Elliptical paths five-axis flank milling Surface topography Workpiece curvature
原文传递
Efficiently constructing collision-free regions of tool orientations for holder in five-axis machining of blisk 被引量:2
9
作者 Zhiwei WANG Xiaojun LIN Yaoyao SHI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2743-2756,共14页
Blisks with the integral structure are key parts used in new jet engines to promote the performance of aircrafts,which also increases the complexity of tool orientation planning in the five-axis machining.It is an ess... Blisks with the integral structure are key parts used in new jet engines to promote the performance of aircrafts,which also increases the complexity of tool orientation planning in the five-axis machining.It is an essential task to find the collision-free tool orientation when the tool holder is pushed deep into the channel of blisk to increase rigidity and reduce vibration.Since the radius of the holder varies with the height,the line-visibility is no longer applicable when constructing collision-free regions of tool orientation.In this paper,a method of constructing collisionfree regions without interference checking is proposed.The work of finding collision-free regions resorts to solving the local contact curves on the checking surfaces of blisk.And it further transforms into searching the locally tangent points(named critical points)between the holder and surface.Then a tracking-based algorithm is proposed to search the sample critical points on these local contact curves.And the corresponding critical vectors are also calculated synchronously.Besides,the safety allowance,discrete precision and acceptable deviation are introduced in the algorithm to ensure accuracy by controlling the angle between two adjacent critical vectors properly.After that,the searched critical vectors are mapped orderly to two-dimensional space and the collisionfree regions are constructed.This method is finally verified and compared with a referenced method.The results show that the proposed method can efficiently construct collision-free regions for holder under the given accuracy. 展开更多
关键词 BLISK Collision-free region five-axis Interference detection Machining Tool holder
原文传递
Continuity control method of cutter posture vector for efficient five-axis machining 被引量:1
10
作者 HWANG Jong-dae KIM Sang-myung +1 位作者 JUNG Hyun-chul JUNG Yoon-gyo 《Journal of Central South University》 SCIE EI CAS 2011年第6期1969-1975,共7页
During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to impr... During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time. 展开更多
关键词 five-axis control machining CONFIGURATION-SPACE B-SPLINE continuity control method IMPELLER interference
在线阅读 下载PDF
Five-Axis Interpolation of Continuous Short Linear Trajectories for 3[PP]S-XY Hybrid Mechanism by Dual Bezier Blending 被引量:1
11
作者 石璟 毕庆贞 王宇晗 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第1期90-102,共13页
A novel five-axis real-time interpolation algorithm for 3[PP]S-XY hybrid mechanism is proposed in this paper. In the algorithm, the five-axis tool path for controlling this hybrid mechanism is separated into two sub-p... A novel five-axis real-time interpolation algorithm for 3[PP]S-XY hybrid mechanism is proposed in this paper. In the algorithm, the five-axis tool path for controlling this hybrid mechanism is separated into two sub-paths. One sub-path describes the movement of 3[PP]S parallel kinematic mechanism module, and the other one describes the movement of XY platform. A pair of cubic Bezier curves is employed to smooth the corners in those two sub-paths. Based on the homogenous Jacobian matrix of 3[PP]S mechanism, a relationship between the position errors of every driving joint in hybrid mechanism and the position deviation of the tool tip center point at the moving platform is established. This relationship is used to estimate the approximation error for the corners smoothing according to the accuracy requirement of tool tip center in interpolation. Due to the high computational efficiency of this corner smoothing method, it is integrated into the look-ahead module of computer numerical control(CNC) system to perform online tool path smoothing. By performing the speed planning based on a floating window scheme, a jerk limited S-shape speed profile can be generated efficiently. On this basis, a realtime look-ahead scheme, which is comprised of path-smoothing and feedrate scheduling, is developed to acquire a speed profile with smooth acceleration. A monotonic cubic spline is employed for synchronization between those two smoothed sub-paths in tool path interpolation. This interpolation algorithm has been integrated into our own developed CNC system to control a 3PRS-XY experimental instrument(P, R and S standing for prismatic,revolute and spherical, respectively). A club shaped trajectory is adopted to verify the smoothness and efficiency of the five-axis interpolator for hybrid mechanism control. 展开更多
关键词 five-axis interpolation hybrid mechanism dual Bezier blending LOOK-AHEAD smoothing speed planning
原文传递
Fault monitoring and diagnosis of motorized spindle in five-axis Machining Center based on CNN-SVM-PSO 被引量:1
12
作者 Shuo WANG Zhenliang YU +1 位作者 Xu LIU Zhipeng LYU 《Mechanical Engineering Science》 2022年第2期21-29,I0005,共10页
A spindle fault diagnosis method based on CNN-SVM optimized by particle swarm algorithm(PSO)is proposed to address the problems of high failure rate of electric spindles of high precision CNC machine tools,while manua... A spindle fault diagnosis method based on CNN-SVM optimized by particle swarm algorithm(PSO)is proposed to address the problems of high failure rate of electric spindles of high precision CNC machine tools,while manual fault diagnosis is a tedious task and low efficiency.The model uses a convolutional neural network(CNN)model as a deep feature miner and a support vector machine(SVM)as a fault state classifier.Taking the electric spindle of a five-axis machining centre as the experimental research object,the model classifies and predicts four labelled states:normal state of the electric spindle,loose state of the rotating shaft and coupling,eccentric state of the motor air gap and damaged state of the bearing and rolling body,while introducing a particle swarm algorithm(PSO)is introduced to optimize the hyperparameters in the model to improve the prediction effect.The results show that the proposed hybrid PSO-CNN-SVM model is able to monitor and diagnose the electric spindle failure of a 5-axis machining centre with an accuracy of 99.33%.In comparison with the BP model,SVM model,CNN model and CNN-SVM model,the accuracy of the model increased by 10%,6%,4%and 2%respectively,which shows that the fault diagnosis model proposed in the paper can monitor the operation status of the electric spindle more effectively and diagnose the type of electric spindle fault,so as to improve the maintenance strategy. 展开更多
关键词 five-axis machining centres CNN-SVM spindle vibration fault diagnosis
在线阅读 下载PDF
A Generic Kinematic Model for Three Main Types of Five-axis Machine Tools 被引量:1
13
作者 YU Yang WEI Sheng-min +1 位作者 LIU Ping AO Zhi-qiang 《International Journal of Plant Engineering and Management》 2009年第4期243-249,共7页
Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was d... Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was developed as a viable alternative to the particular solutions that are only applicable to individual machine configurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of a five-axis machine-tool. This versatile model is very useful applied to the design of five-axis machine tools. 展开更多
关键词 CNC machining of sculptured surfaces five-axis machine tool configuration kinematic model transformation matrix
在线阅读 下载PDF
A New Dynamics Analysis Model for Five-Axis Machining of Curved Surface Based on Dimension Reduction and Mapping
14
作者 Minglong Guo Zhaocheng Wei +2 位作者 Minjie Wang Zhiwei Zhao Shengxian Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期172-184,共13页
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an... The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces. 展开更多
关键词 Curved surface five-axis machining Dimension reduction and mapping Milling force DYNAMICS
在线阅读 下载PDF
High accuracy NURBS interpolation for five-axis machine of table-rotating/spindle-tilting type
15
作者 吴广宽 席光 +1 位作者 樊宏周 郑健生 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第2期149-153,158,共6页
In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a defi... In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a definition of linear interpolation error of post-processed data was proposed, which should be paid more attention to because it will not only reduce quality of the surface but also may cause interference and other unexpected trouble. In order to control the error, a robust algorithm was proposed, which successfully met a desired error limit through interpolating some essential CL data. The excellence of the proposed algorithm, in terms of its reliability and self-adaptiveness, has been proved by simulation results. 展开更多
关键词 five-axis machine NURBS chord error linear interpolation error ALGORITHM
在线阅读 下载PDF
Rotary axis calculation for five-axis FDM printer using a point-fitting optimization method
16
作者 LIU Hao LIU Lei SHEN Kai 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第2期258-271,共14页
This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to... This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to the kinematic model in which a point rotates around a spatial line in the machine coordinate system of the printer.The model considers the A-and C-axes as two spatial lines.It is a two-object optimization model including two aspects.One is that the sum of deviations between the measured and computed points should be small;the other is that the deviations should be uniformly distributed for every measured point.A comparison of the new optimization method with conventional error-compensation methods reveals that the former has higher location accuracy.Using the optimized AC axes,5-axis 3D printing paths are planned for some complex workpieces.Data analysis and printing samples show that the optimized AC axes satisfy 5-axes FDM printing requirements for nozzles with a diameter of 1.0 mm. 展开更多
关键词 3D printing five-axis rotary table location error error calibration
在线阅读 下载PDF
Design of Five-Axis Camera Stabilizer Based on Quaternion Untracked Kalman Filtering Algorithm
17
作者 Xiaohui Cheng Yu Zhang Dezhi Liu 《国际计算机前沿大会会议论文集》 2019年第2期212-213,共2页
A five-axis camera stabilizer based on quaternion unscented Kalman filter algorithm is designed. It combined the unscented Kalman filter algorithm with the quaternion attitude solution and was solved by attitude senso... A five-axis camera stabilizer based on quaternion unscented Kalman filter algorithm is designed. It combined the unscented Kalman filter algorithm with the quaternion attitude solution and was solved by attitude sensor. By attitude algorithm, the motor in three directions of pitch, heading and roll in the stabilizer was accurately adjusted to control the movement of the three electronic arms. In order to improve the three-axis hand-held camera stabilizer’s performance, and to solve the jitter problem of up-and-down movement not being eliminated, two mechanical anti-shake arms were loaded under the stabilizer to balance the camera’s picture in pitch, roll, heading, and above and below five directions. Movement can maintain a stable effect. The simulation results show that the algorithm can effectively suppress the attitude angle divergence and improve the attitude calculation accuracy. 展开更多
关键词 ATTITUDE sensor QUATERNION ATTITUDE fusion Untracked KALMAN filter five-axis STABILIZER
在线阅读 下载PDF
Tool wear condition monitoring method of five-axis machining center based on PSO-CNN
18
作者 Shuo WANG Zhenliang YU +1 位作者 Changguo LU Jingbo WANG 《Mechanical Engineering Science》 2022年第2期11-20,I0006,共11页
The effective monitoring of tool wear status in the milling process of a five-axis machining center is important for improving product quality and efficiency,so this paper proposes a CNN convolutional neural network m... The effective monitoring of tool wear status in the milling process of a five-axis machining center is important for improving product quality and efficiency,so this paper proposes a CNN convolutional neural network model based on the optimization of PSO algorithm to monitor the tool wear status.Firstly,the cutting vibration signals and spindle current signals during the milling process of the five-axis machining center are collected using sensor technology,and the features related to the tool wear status are extracted in the time domain,frequency domain and time-frequency domain to form a feature sample matrix;secondly,the tool wear values corresponding to the above features are measured using an electron microscope and classified into three types:slight wear,normal wear and sharp wear to construct a target Finally,the tool wear sample data set is constructed by using multi-source information fusion technology and input to PSO-CNN model to complete the prediction of tool wear status.The results show that the proposed method can effectively predict the tool wear state with an accuracy of 98.27%;and compared with BP model,CNN model and SVM model,the accuracy indexes are improved by 9.48%,3.44%and 1.72%respectively,which indicates that the PSO-CNN model proposed in this paper has obvious advantages in the field of tool wear state identification. 展开更多
关键词 five-axis machining center tool wear PSO-CNN intelligent monitoring
在线阅读 下载PDF
Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (Ⅰ): Third-order approximation of tool envelope surface 被引量:26
19
作者 ZHU LiMin1, DING Han2 & XIONG YouLun2 1 State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China 2 State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第7期1904-1912,共9页
In this paper, the geometric properties of a pair of line contact surfaces are investigated. Then, based on the observation that the cutter envelope surface contacts with the cutter surface and design surface along th... In this paper, the geometric properties of a pair of line contact surfaces are investigated. Then, based on the observation that the cutter envelope surface contacts with the cutter surface and design surface along the characteristic curve and cutter contact (CC) path, respectively, a mathematical model describing the third-order approximation of the cutter envelope surface according to just one given cutter location (CL) is developed. It is shown that at the CC point both the normal curvature of the normal section of the cutter envelope surface and its derivative with respect to the arc length of the normal section can be determined by those of the cutter surface and design surface. This model characterizes the intrinsic relationship among the cutter surface, cutter envelope surface and design surface in the neighborhood of the CC point, and yields the mathematical foundation for optimally approximating the cutter envelope surface to the design surface by adjusting the cutter location. 展开更多
关键词 five-axis NC machining ROTARY CUTTER CUTTER ENVELOPE surface normal CURVATURE THIRD-ORDER point contact
原文传递
Global optimization of tool path for five-axis flank milling with a cylindrical cutter 被引量:23
20
作者 DING Han1 & ZHU LiMin2 1 State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 2 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第8期2449-2459,共11页
In this paper, optimum positioning of cylindrical cutter for five-axis flank milling of non-developable ruled surface is addressed from the perspective of surface approximation. Based on the developed interchangeabili... In this paper, optimum positioning of cylindrical cutter for five-axis flank milling of non-developable ruled surface is addressed from the perspective of surface approximation. Based on the developed interchangeability principle, global optimization of the five-axis tool path is modeled as approximation of the tool envelope surface to the data points on the design surface following the minimum zone criterion recommended by ANSI and ISO standards for tolerance evaluation. By using the signed point-to-surface distance function, tool path plannings for semi-finish and finish millings are formulated as two constrained optimization problems in a unified framework. Based on the second order Taylor approximation of the distance function, a sequential approximation algorithm along with a hierarchical algorithmic structure is developed for the optimization. Numerical examples are presented to confirm the validity of the proposed approach. 展开更多
关键词 five-axis FLANK milling TOOL path OPTIMIZATION TOOL axis trajectory SURFACE SURFACE approximation distance function MINIMAX OPTIMIZATION
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部