Job shop scheduling has become the basis and core of advanced manufacturing technology. Various differences exist between academic research and practical production. The majority of previous researches on job shop sch...Job shop scheduling has become the basis and core of advanced manufacturing technology. Various differences exist between academic research and practical production. The majority of previous researches on job shop scheduling problem (JSSP)describe the basic production environment, which have a single objective and limited constraints. However,a practical process of production is characterized by having multiple objectives,no-wait constraint,and limited storage. Thus this research focused on multiobjective,no-wait JSSP. To analyze the problem,it was further divided into two sub-problems, namely, sequencing and timetabling. Hybrid non-order strategy and modified complete local search with memory were used to solve each problem individually. A Pareto-based strategy for performing fitness assessment was presented in this study. Various experiments on benchmark problems proved the feasibility and effectiveness of the proposed algorithm.展开更多
The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=...The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=0° is extracted for analysis. By performing nonlinear regression fitting on the experimental signal to the Henyey-Greenstein phase function, the anisotropy factor is determined. The experiments with tissue phantom consisting of the aqueous suspension of polystyrene microspheres are carried out. The results show that the measured anisotropy factor is well described by Mie theory.展开更多
基金National Natural Science Foundations of China(Nos.61174040,61573144,11304200)Shanghai Commission of Science and Technology,China(No.12JC1403400)+1 种基金Shanghai Municipal Education Commission for Training Young Teachers,China(No.ZZSDJ15031)Shanghai Teaching and Reforming Experimental Undergraduate Majors Construction Program,China
文摘Job shop scheduling has become the basis and core of advanced manufacturing technology. Various differences exist between academic research and practical production. The majority of previous researches on job shop scheduling problem (JSSP)describe the basic production environment, which have a single objective and limited constraints. However,a practical process of production is characterized by having multiple objectives,no-wait constraint,and limited storage. Thus this research focused on multiobjective,no-wait JSSP. To analyze the problem,it was further divided into two sub-problems, namely, sequencing and timetabling. Hybrid non-order strategy and modified complete local search with memory were used to solve each problem individually. A Pareto-based strategy for performing fitness assessment was presented in this study. Various experiments on benchmark problems proved the feasibility and effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(No.61108086)the Natural Science Foundation of Chongqing(Nos.2011BB5066 and 2012jj A0612)+3 种基金the Chongqing City Science and Technology Plan(No.cstc2012gg-yyjs0572)the Fundamental Research Funds for the Central Universities(Nos.CDJZR10160003 and CDJZR13160008)the China Postdoctoral Science Foundationthe Chongqing Postdoctoral Science Special Foundation of China
文摘The potential capability of low coherence backscattering(LBS) is explored to determine the anisotropy factor based on azimuthal light backscattering map. The scattering intensity signal measured at azimuthal angle φ=0° is extracted for analysis. By performing nonlinear regression fitting on the experimental signal to the Henyey-Greenstein phase function, the anisotropy factor is determined. The experiments with tissue phantom consisting of the aqueous suspension of polystyrene microspheres are carried out. The results show that the measured anisotropy factor is well described by Mie theory.