The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to...The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.展开更多
In order to obtain the optimized aircraft design concept which meets the increasingly complex operation environment at the conceptual design stage,System-of-systems(So S)engineering must be considered.This paper propo...In order to obtain the optimized aircraft design concept which meets the increasingly complex operation environment at the conceptual design stage,System-of-systems(So S)engineering must be considered.This paper proposes a novel optimization method for the design of aircraft Mission Success Space(MSS)based on Gaussian fitting and Genetic Algorithm(GA)in the So S area.First,the concepts in the design and evaluation of MSS are summarized to introduce the Contribution to System-of-Systems(CSS)by using a conventional effectiveness index,Mission Success Rate(MSR).Then,the mathematic modelling of Gaussian fitting technique is noted as the basis of the optimization work.After that,the proposed optimal MSS design is illustrated by the multiobjective optimization process where GA acts as the search tool to find the best solution(via Pareto front).In the case study,a simulation system of penetration mission was built.The simulation results are collected and then processed by two MSS design schemes(contour and neural network)giving the initial variable space to GA optimization.Based on that,the proposed optimization method is implemented under both schemes whose optimal solutions are compared to obtain the final best design in the case study.展开更多
Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal di...Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.展开更多
3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the...3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.展开更多
The algorithm is divided into two steps. The first step pre-locates the blank by aligning its centre of gravity and approximate normal vector with those of destination surfaces, with largest overlap of projections...The algorithm is divided into two steps. The first step pre-locates the blank by aligning its centre of gravity and approximate normal vector with those of destination surfaces, with largest overlap of projections of two objects on a plane perpendicular to the normal vector. The second step is optimizing an objective function by means of gradient-simulated annealing algorithm to get the best matching of a set of distributed points on the blank and destination surfaces. An example for machining hydroelectric turbine blades is given to verify the effectiveness of algorithm.展开更多
基金supported by the National Social Science Fund of China(2022-SKJJ-B-084).
文摘The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.
文摘In order to obtain the optimized aircraft design concept which meets the increasingly complex operation environment at the conceptual design stage,System-of-systems(So S)engineering must be considered.This paper proposes a novel optimization method for the design of aircraft Mission Success Space(MSS)based on Gaussian fitting and Genetic Algorithm(GA)in the So S area.First,the concepts in the design and evaluation of MSS are summarized to introduce the Contribution to System-of-Systems(CSS)by using a conventional effectiveness index,Mission Success Rate(MSR).Then,the mathematic modelling of Gaussian fitting technique is noted as the basis of the optimization work.After that,the proposed optimal MSS design is illustrated by the multiobjective optimization process where GA acts as the search tool to find the best solution(via Pareto front).In the case study,a simulation system of penetration mission was built.The simulation results are collected and then processed by two MSS design schemes(contour and neural network)giving the initial variable space to GA optimization.Based on that,the proposed optimization method is implemented under both schemes whose optimal solutions are compared to obtain the final best design in the case study.
文摘Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.
基金supported by The National Key Research and Development Program of China (2021YFC3090304)The Fundamental Research Funds for the Central Universities,China University of Mining and Technology-Beijing (8000150A073).
文摘3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.
文摘The algorithm is divided into two steps. The first step pre-locates the blank by aligning its centre of gravity and approximate normal vector with those of destination surfaces, with largest overlap of projections of two objects on a plane perpendicular to the normal vector. The second step is optimizing an objective function by means of gradient-simulated annealing algorithm to get the best matching of a set of distributed points on the blank and destination surfaces. An example for machining hydroelectric turbine blades is given to verify the effectiveness of algorithm.