First-principle calculations,especially by the density functio nal theory(DFT),is used to study the structure and properties of oxygen/metal interfaces.Adsorption of oxygen molecules or atoms on metal surfaces plays a...First-principle calculations,especially by the density functio nal theory(DFT),is used to study the structure and properties of oxygen/metal interfaces.Adsorption of oxygen molecules or atoms on metal surfaces plays a key role in surface science and technology.This review is dedicated to the adsorption of oxygen molecules or atoms on metal surfaces and diffusion behavior from first-principle investigation.We hope that this review can provide some useful contributions to understa nd the study of adsorption properties and diffusion behavior on a metal surface at an atomic-scale,especially for those interested in catalytic oxidation and application of corrosion.展开更多
The electronic structures, deformation charge density, dipole moment, and optical properties of N-La-codoped anatase titanium dioxide (TiO2) are studied using the plane-wave ultrasoft pseudopotential method based on...The electronic structures, deformation charge density, dipole moment, and optical properties of N-La-codoped anatase titanium dioxide (TiO2) are studied using the plane-wave ultrasoft pseudopotential method based on the density functional theory (DFT). The optical properties of two-ion-doped TiO2 are analyzed via electronic structures, deformation charge density, and dipole moment. For the model of N-La-doped TiO2, a smaller atom fraction of N and La atoms induces better optical properties. The absorption edges of two doped TiO2 models redshift to the visible-light region.展开更多
The surface segregation of La and its effect on the oxygen adsorption on a Mg (0001) surface for a coverage 0=-0.25 monolayer were performed by using first-principles calculations. The calculated results showed that...The surface segregation of La and its effect on the oxygen adsorption on a Mg (0001) surface for a coverage 0=-0.25 monolayer were performed by using first-principles calculations. The calculated results showed that La atoms preferred occupying surface sites to the bulk sites, which suggested the La surface segregation. When oxygen atoms adsorbed on a pure or La alloyed Mg (0001) surface, certain amount of heat would release, and La alloying made the heat released less, which might increase the ignition point of Mg alloy. Both Mg and La had strong atomic affinity with oxygen, so the oxidation film of Mg-La alloys consisted of MgO, La2O3. The denser La2O3 turned oxide film into free and close structure, and prevented oxygen from passing through the oxidation film. The La-O covalent bonding could explain why La2O3 was compact, and resulted in good ignition-proof of Mg-La alloys.展开更多
The electronic structures and effective masses of the N mono-doped and Al N, Ga-N, In-N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. Accor...The electronic structures and effective masses of the N mono-doped and Al N, Ga-N, In-N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. According to the results, the impurity states in the codoping cases are more delocalised compared to the N mono-doping case, which means a better conductive behaviour can be obtained by codoping. Besides, compared to the Al-N and Ga-N codoping cases, the hole effective mass of In-N codoped system is much smaller, indicating the p-type conductivity can be more enhanced by In N codoping展开更多
Grain boundary(GB)significantly influences the mechanical properties of metal structural materials,yet the effect of solutes on GB modification and the underlying atomic mechanisms of solute segregation and strengthen...Grain boundary(GB)significantly influences the mechanical properties of metal structural materials,yet the effect of solutes on GB modification and the underlying atomic mechanisms of solute segregation and strengthening in iron-based alloys remain insufficiently explored.To address this research gap,we conducted a comprehensive investigation into the segregation and strengthening effect of 33 commonly occurring solutes in iron-based alloys,with a specific focus on the body-centered cubic(BCC)iron5(310)GB,utilizing first-principle calculations.Our findings reveal a negative linear correlation between solute segregation energy and atomic radius,highlighting the crucial role of atomic radius and electronic structure in determining GB strength.Moreover,through analyzing the relationship between strengthening energy and segregation energy,it was found that the elements Ni,Co,Ti,V,Mn,Nb,Cr,Mo,W,and Re are significant enhancers of GB strength upon segregation.This study aims to provide theoretical guidance for selecting optimal doping elements in BCC iron-based alloys.展开更多
A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Bu...A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.展开更多
By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies o...By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.展开更多
Constructing heterostructures by combining COFs and TMD is a new strategy to design efficient photocatalysts for CO2 reduction reaction(CO2RR) due to their good stability,tunable band gaps and efficient charge separat...Constructing heterostructures by combining COFs and TMD is a new strategy to design efficient photocatalysts for CO2 reduction reaction(CO2RR) due to their good stability,tunable band gaps and efficient charge separation.Based on the synthesis of completely novel C4N-COF in our previous re ported work,a new C4N/MoS2 heterostructure was constructed and then the related structural,electronic and optical properties were also studied using first principle calculations.The interlayer coupling effect and charge transfer between the C4N and MoS2 layer are systematically illuminated.The reduced band gap of the C4N/MoS2 heterostructure is beneficial to absorb more visible light.For the formation of type-Ⅱ band alignment,a built-in electric field appears which separates the photogene rated electrons and holes into different layers efficiently and produces redox active sites.The band alignment of the heterostructure ensures its photocatalytic activities of the whole CO2 reduction reaction.Furthermore,the charge density difference and charge carrier mobility confirm the existence of the built-in electric field at the interface of the C4N/MoS2 heterostructure directly.Finally,the high optical absorption indicates it is an efficient visible light harvesting photocatalyst.Therefore,this wo rk could provide strong insights into the internal mechanism and high photocatalytic activity of the C4N/MoS2 heterostructure and offer guiding of designing and synthesizing COF/TMD heterostructure photocatalysts.展开更多
Conducting all-in-one etch process for 3D-NAND fabrication requires close etch rate(E/R)for SiO2 and Si3N4;however,to attain comparable and high etch rate for both materials is challenging.In this work,we performed fi...Conducting all-in-one etch process for 3D-NAND fabrication requires close etch rate(E/R)for SiO2 and Si3N4;however,to attain comparable and high etch rate for both materials is challenging.In this work,we performed first-principle studies on the etching mechanism of Si3N4 in fluorocarbon/oxygen plasma.The feasibility of using fluorocarbon/oxygen plasma to etch Si3N4 while attaining close E/R to SiO2 through the complementary nitride to oxynitiride(SiOxNy)transformation has been identified.Such transformation involves two stages:N atom elimination and Si-O bond formation.By modeling the essential chemical reactions on the Si3N4 surface,we shed light upon the underlying mechanisms behind both stages.We simulated the N-elimination reactions involving the formation and desorption of NO and FNO molecules as well as the substitution with F atoms.We found that N atoms can be eliminated by forming NO molecules,especially with the assistance of F-substitution in Si-N bond breaking.The predicted O-additive energies indicates that forming SiOxNy structure after N-elimination is possible.Following that,the dependency of chemistries favoring either high E/R or active SiOxNy formation on the fluorocarbon/oxygen ratio was discussed.We hope that the work will build a foundation for future studies on pursuing all-in-one ON etch process via the surface modifications.展开更多
The mechanism of lithium intercalation/deintercalation for phase Al0.8Ni3Sn0.2 as anode material used in lithium ion battery was studied carefully based on the first-principle plane wave pseudo-potential method. The c...The mechanism of lithium intercalation/deintercalation for phase Al0.8Ni3Sn0.2 as anode material used in lithium ion battery was studied carefully based on the first-principle plane wave pseudo-potential method. The calculated results indicated that SnNi Al alloy had high theoretical capacity when used as anode material, however, there was high initial irreversible capacity loss because of the large volume expansion. Therefore the technological parameters during preparing the Sn-Ni-Al anode should be controlled strictly to make the content of Al0.8Ni3Sn0.2 phase as low as possible and to make the anode consist of promising Sn-Ni and AI-Ni phases. For comparison, an experiment based on magnetron sputtering was done. The result showed that the calculation is in good agreement with the experiment. We found that the first-principle investigation method is of far-reaching significance in synthesising new commercial anode materials with high capacity and good cycle performance.展开更多
We present results of first-principle study for both neutral and anionic onion-like [As@Ni12@As20]. The groundstates of singly-charged and doubly-charged anions deviate from ideal Ih symmetrical geometry because of Ja...We present results of first-principle study for both neutral and anionic onion-like [As@Ni12@As20]. The groundstates of singly-charged and doubly-charged anions deviate from ideal Ih symmetrical geometry because of Jahn-Teller effect, whereas the triply-charged singlet and neutral quartet have similar stable geometries of Ih symmetry. The infrared and Raman spectra may provide a way to determine various charge states of this molecule with the same symmetry. Based on our systematical calculations, we suggest additional experimental measurements in order to determine the appropriate functional with great confidence, which should be important in the research for future quantum dot devices.展开更多
The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O....The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.展开更多
The potential utilization and development of the Ba isotope tool depend on an accurateδ^(137/134)Ba determination of the samples.During the chemical purification,whether the adsorption process on the surface of the i...The potential utilization and development of the Ba isotope tool depend on an accurateδ^(137/134)Ba determination of the samples.During the chemical purification,whether the adsorption process on the surface of the ionexchange resin could lead to the Ba isotopic fractionation and the degree of fractionation directly influence the accurateδ^(137/134)Ba determination.In the present work,first-principles calculations based on the density functional theory were used to quantify the Ba isotopic equilibrium fractionation factor between the aqueous solution and the resin in the acid leaching process.By constructing and optimizing the geometric configurations of Ba-containing species,Ba(H_(2)O)_(n)^(2+),Ba(H_(2)O)_(n)Cl_(2),Ba(H_(2)O)_(n)(NO_(3))2,and the adsorbed Ba^(2+)on the surface of the resin,extracting the harmonic vibrational frequencies,we finally at 298 K obtained the fractionations,Δ^(137/134)Ba_(soln-ads)=0.07‰,Δ^(137/134)Ba_(Ba(H_(2)O)_(n)Cl_(2)-ads)=0.05‰,andΔ^(137/134)-Ba^(Ba(H_(2)O)_(n)(NO_(3))2-ads)=0.02‰.Overall,there were almost no Ba isotope fractionations during leaching.Although the Ba isotope fractionation can be magnified by the Rayleigh fractionation process in purification,the difference inδ137/134Ba between the initial and final stages did not exceed0.060‰(or 0.045‰)when leaching the standard sample with HCl or HNO_(3),which is equal to or less than the accuracy of Ba isotopic analysis.At a common yield of89.75%,Ba isotopic fractionation induced by incomplete recovery was 0.015‰for HCl(or 0.011‰for HNO_(3)).Finally,if the influence of an incomplete recovery on theδ137/134Ba determination needs to be ignored,the recovery is suggested to be not less than 67%for HCl(or 46%for HNO_(3)).展开更多
The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first...The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.展开更多
The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory....The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.展开更多
The adsorption properties of a magnesium porphyrin(MgP)molecule on Au(111)surface covered with up to three lay-ers of sodium chloride(NaCl)were investigated by means of first-principles calculations.The most stable ad...The adsorption properties of a magnesium porphyrin(MgP)molecule on Au(111)surface covered with up to three lay-ers of sodium chloride(NaCl)were investigated by means of first-principles calculations.The most stable adsorption configuration of MgP on the NaCl/Au(111)heterosurfaces was found to be at the Cl-top site with a 20°angle between the[110]lattice direction of NaCl and the Mg–N bond of the molecule.Compared with MgP molecule adsorbed on bare Au(111),the inclusion of NaCl lay-ers can lead to a significant decrease in the adsorption energy of the MgP molecule.The exis-tence of NaCl layers also reduced the charge transfer between the molecule and the surface.For heterosurfaces with two or three monolayers of NaCl,the charge transfer was almost com-pletely suppressed.The obtained partial density of states(PDOS)showed that hybridization between the electronic structures of the adsorbed MgP molecule and the metal surface can be significantly suppressed when NaCl layers were added.For the heterosurface with three lay-ers of NaCl,the PDOS around the Fermi level was almost identical with that of the free molecule,suggesting the electronic structure of the MgP molecule was nicely preserved.Influ-ence of the NaCl layers on the electronic structure of the MgP molecule was mainly found for molecular orbitals(MOs)away from the Fermi level as a result of the large band gap of the NaCl layers.展开更多
Solute segregation at grain boundaries(GBs)can significantly influence GB cohesion.In this work,the segregation energies of solutes(Zn,Al,Ag,Ca,and Gd)were first investigated at six symmetrical tilt GBs rotating aroun...Solute segregation at grain boundaries(GBs)can significantly influence GB cohesion.In this work,the segregation energies of solutes(Zn,Al,Ag,Ca,and Gd)were first investigated at six symmetrical tilt GBs rotating around[0001]axis of Mg,to uncover the impact of GB characteristics on solute segregation behavior.The results reveal that solute segregation propensity is closely related to the local geometric environment of GB sites,but has little correlation with intrinsic GB properties(such as GB misorientation and GB energy).Furthermore,relationships between GB site characteristics and solute segregation tendencies were established.Ca-like solutes tend to occupy GB sites with larger Voronoi volumes(V),while Zn-like solutes prefer GB sites with smaller V as well as smaller shortest bond lengths(SBL).Based on this finding,we further evaluated the segregation capacities of 26 solutes at their most energetically stable segregation sites and their impact on GB cohesion.A descriptor that can effectively capture the strengthening/embrittling potency of segregated solutes on GBs was proposed by performing the crystal orbital Hamilton population(COHP)analyses.It was found that the discrepancies in bond strength between GBs and free surface dominate the solute-strengthening behavior.Finally,a first-principles“design map”regarding the segregation energies and strengthening energies was provided,which offers a database for designing Mg alloys with high fracture toughness.展开更多
Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute ...Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute elements(B,C,N,and O)on the GB.The first-principles calculation based on the density function theory was applied to explore the effect of B,C,N,and O onγ-FeΣ5(210)[001]GB.The GB energy,the segregation energy,the Voronoi volume,and the theoretical tensile test were calculated to investigate the segregation behavior and the strengthening effect.The structural change and electronic evolution were also investigated by bond change,charge density distribution,and density of states.The results show that B is favored to segregate at the capped trigonal prism(CTP)position with a large void and has a strengthening effect on the GB strength,while O and N are preferred to locate at the octahedral(OCT)site and have an embrittling effect on GB cohesion.C can segregate at both the CTP site and the OCT location with little energy difference.As C segregates at the OCT site,it is beneficial for GB strength.However,it is detrimental at the CTP position.It can be seen that the influence of solutes is closely related to the element type and segregated position.展开更多
MgO is one of the most abundant minerals in the Earth’s interior,and its structure and properties at high temperature and pressure are important for us to understand the composition and behavior in the deep Earth.In ...MgO is one of the most abundant minerals in the Earth’s interior,and its structure and properties at high temperature and pressure are important for us to understand the composition and behavior in the deep Earth.In the present work,firstprinciples molecular dynamics calculations were performed to investigate the pressure-induced structural evolution of the MgO melts at 4000 K and 5000 K.The results predicted the liquid-solid phase boundaries,and the calculated viscosities of the melts may help us to understand the transport behavior under the corresponding Earth conditions.展开更多
基金supported by the National Key R&D Program of China(Nos.2017YFB0305600 and 2017YFB0306000)the Fok Ying Tung Education Foundation(No.171101)the Youth Innovation Team of Shaanxi Universities(No.2019-2022)。
文摘First-principle calculations,especially by the density functio nal theory(DFT),is used to study the structure and properties of oxygen/metal interfaces.Adsorption of oxygen molecules or atoms on metal surfaces plays a key role in surface science and technology.This review is dedicated to the adsorption of oxygen molecules or atoms on metal surfaces and diffusion behavior from first-principle investigation.We hope that this review can provide some useful contributions to understa nd the study of adsorption properties and diffusion behavior on a metal surface at an atomic-scale,especially for those interested in catalytic oxidation and application of corrosion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50873047)
文摘The electronic structures, deformation charge density, dipole moment, and optical properties of N-La-codoped anatase titanium dioxide (TiO2) are studied using the plane-wave ultrasoft pseudopotential method based on the density functional theory (DFT). The optical properties of two-ion-doped TiO2 are analyzed via electronic structures, deformation charge density, and dipole moment. For the model of N-La-doped TiO2, a smaller atom fraction of N and La atoms induces better optical properties. The absorption edges of two doped TiO2 models redshift to the visible-light region.
基金National Natural Science Foundation of China(50671069)Natural Science Foundation of Liaoning Province(20102173)the Experimental Central Director’s Foundation of Shenyang Normal University(Sy201103)
文摘The surface segregation of La and its effect on the oxygen adsorption on a Mg (0001) surface for a coverage 0=-0.25 monolayer were performed by using first-principles calculations. The calculated results showed that La atoms preferred occupying surface sites to the bulk sites, which suggested the La surface segregation. When oxygen atoms adsorbed on a pure or La alloyed Mg (0001) surface, certain amount of heat would release, and La alloying made the heat released less, which might increase the ignition point of Mg alloy. Both Mg and La had strong atomic affinity with oxygen, so the oxidation film of Mg-La alloys consisted of MgO, La2O3. The denser La2O3 turned oxide film into free and close structure, and prevented oxygen from passing through the oxidation film. The La-O covalent bonding could explain why La2O3 was compact, and resulted in good ignition-proof of Mg-La alloys.
基金Project supported by the Special Foundation for Young Scientists of Anhui Province,China (Grant No. 2009SQRZ097ZD)the Foundation of Anhui University of Architecture (Grant No. 20070601)
文摘The electronic structures and effective masses of the N mono-doped and Al N, Ga-N, In-N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. According to the results, the impurity states in the codoping cases are more delocalised compared to the N mono-doping case, which means a better conductive behaviour can be obtained by codoping. Besides, compared to the Al-N and Ga-N codoping cases, the hole effective mass of In-N codoped system is much smaller, indicating the p-type conductivity can be more enhanced by In N codoping
基金funded by the National Natural Science Foundation of China(Nos.52122408,52071023,52101019,52293391,and 51901013)Honghui Wu acknowledges support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing,Nos.06500135 and FRF-TP2021-04C1)。
文摘Grain boundary(GB)significantly influences the mechanical properties of metal structural materials,yet the effect of solutes on GB modification and the underlying atomic mechanisms of solute segregation and strengthening in iron-based alloys remain insufficiently explored.To address this research gap,we conducted a comprehensive investigation into the segregation and strengthening effect of 33 commonly occurring solutes in iron-based alloys,with a specific focus on the body-centered cubic(BCC)iron5(310)GB,utilizing first-principle calculations.Our findings reveal a negative linear correlation between solute segregation energy and atomic radius,highlighting the crucial role of atomic radius and electronic structure in determining GB strength.Moreover,through analyzing the relationship between strengthening energy and segregation energy,it was found that the elements Ni,Co,Ti,V,Mn,Nb,Cr,Mo,W,and Re are significant enhancers of GB strength upon segregation.This study aims to provide theoretical guidance for selecting optimal doping elements in BCC iron-based alloys.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos. 60908028 and 60971068
文摘A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.
基金supported by the Major Research Plan from the Ministry of Science and Technology of China (Grant No. 2011CB921900)the China Postdoctoral Science Special Foundation (Grant No. 201003009)+2 种基金the China Postdoctoral Science Foundation (GrantNo. 20090460145)the Fundamental Research Funds for the Central Universities (Grant No. 201012200053)the Science and Technology Program of Hunan Province of China (Grant No. 2010DFJ411)
文摘By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.
基金supported by Technological Innovation Talents of Harbin Science and Technology Bureau(No.2017RAQXJ101)the Fundamental Research Foundation for Universities of Heilongjiang Province(No.LGYC2018JC008)+1 种基金supported by the Beijing National Laboratory for Molecular Sciences(No.BNLMS201911)the Young Scholar Training Program of Jilin University。
文摘Constructing heterostructures by combining COFs and TMD is a new strategy to design efficient photocatalysts for CO2 reduction reaction(CO2RR) due to their good stability,tunable band gaps and efficient charge separation.Based on the synthesis of completely novel C4N-COF in our previous re ported work,a new C4N/MoS2 heterostructure was constructed and then the related structural,electronic and optical properties were also studied using first principle calculations.The interlayer coupling effect and charge transfer between the C4N and MoS2 layer are systematically illuminated.The reduced band gap of the C4N/MoS2 heterostructure is beneficial to absorb more visible light.For the formation of type-Ⅱ band alignment,a built-in electric field appears which separates the photogene rated electrons and holes into different layers efficiently and produces redox active sites.The band alignment of the heterostructure ensures its photocatalytic activities of the whole CO2 reduction reaction.Furthermore,the charge density difference and charge carrier mobility confirm the existence of the built-in electric field at the interface of the C4N/MoS2 heterostructure directly.Finally,the high optical absorption indicates it is an efficient visible light harvesting photocatalyst.Therefore,this wo rk could provide strong insights into the internal mechanism and high photocatalytic activity of the C4N/MoS2 heterostructure and offer guiding of designing and synthesizing COF/TMD heterostructure photocatalysts.
文摘Conducting all-in-one etch process for 3D-NAND fabrication requires close etch rate(E/R)for SiO2 and Si3N4;however,to attain comparable and high etch rate for both materials is challenging.In this work,we performed first-principle studies on the etching mechanism of Si3N4 in fluorocarbon/oxygen plasma.The feasibility of using fluorocarbon/oxygen plasma to etch Si3N4 while attaining close E/R to SiO2 through the complementary nitride to oxynitiride(SiOxNy)transformation has been identified.Such transformation involves two stages:N atom elimination and Si-O bond formation.By modeling the essential chemical reactions on the Si3N4 surface,we shed light upon the underlying mechanisms behind both stages.We simulated the N-elimination reactions involving the formation and desorption of NO and FNO molecules as well as the substitution with F atoms.We found that N atoms can be eliminated by forming NO molecules,especially with the assistance of F-substitution in Si-N bond breaking.The predicted O-additive energies indicates that forming SiOxNy structure after N-elimination is possible.Following that,the dependency of chemistries favoring either high E/R or active SiOxNy formation on the fluorocarbon/oxygen ratio was discussed.We hope that the work will build a foundation for future studies on pursuing all-in-one ON etch process via the surface modifications.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50771046)China Postdoctoral Science Foundation (Grant No. 20080440764)Guangdong Province Natural Science Foundation (Grant No. 9451063101002082)
文摘The mechanism of lithium intercalation/deintercalation for phase Al0.8Ni3Sn0.2 as anode material used in lithium ion battery was studied carefully based on the first-principle plane wave pseudo-potential method. The calculated results indicated that SnNi Al alloy had high theoretical capacity when used as anode material, however, there was high initial irreversible capacity loss because of the large volume expansion. Therefore the technological parameters during preparing the Sn-Ni-Al anode should be controlled strictly to make the content of Al0.8Ni3Sn0.2 phase as low as possible and to make the anode consist of promising Sn-Ni and AI-Ni phases. For comparison, an experiment based on magnetron sputtering was done. The result showed that the calculation is in good agreement with the experiment. We found that the first-principle investigation method is of far-reaching significance in synthesising new commercial anode materials with high capacity and good cycle performance.
基金Project supported by the Ministry of Science and Technology (Grant No 2001CB610508), the Ministry of Education of China, and the National Natural Science Foundation of China (Grant No 10314010).
文摘We present results of first-principle study for both neutral and anionic onion-like [As@Ni12@As20]. The groundstates of singly-charged and doubly-charged anions deviate from ideal Ih symmetrical geometry because of Jahn-Teller effect, whereas the triply-charged singlet and neutral quartet have similar stable geometries of Ih symmetry. The infrared and Raman spectra may provide a way to determine various charge states of this molecule with the same symmetry. Based on our systematical calculations, we suggest additional experimental measurements in order to determine the appropriate functional with great confidence, which should be important in the research for future quantum dot devices.
基金Project(2014GXNSFAA118342)supported by Guangxi Natural Science Foundation,ChinaProject supported by Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,ChinaProject supported by High-level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),China
文摘The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.
基金financially supported by the Hebei Natural Sciences Foundation(Grant Nos.D2020402004 and D2021402020)Hebei Education Department Key Program(Grant No.ZD2018086)+1 种基金the State Natural Sciences Foundation(Grant No.41603011)Hebei University of Engineering Doctoral Special Program(Grant Nos.17129033019 and 17129033020)。
文摘The potential utilization and development of the Ba isotope tool depend on an accurateδ^(137/134)Ba determination of the samples.During the chemical purification,whether the adsorption process on the surface of the ionexchange resin could lead to the Ba isotopic fractionation and the degree of fractionation directly influence the accurateδ^(137/134)Ba determination.In the present work,first-principles calculations based on the density functional theory were used to quantify the Ba isotopic equilibrium fractionation factor between the aqueous solution and the resin in the acid leaching process.By constructing and optimizing the geometric configurations of Ba-containing species,Ba(H_(2)O)_(n)^(2+),Ba(H_(2)O)_(n)Cl_(2),Ba(H_(2)O)_(n)(NO_(3))2,and the adsorbed Ba^(2+)on the surface of the resin,extracting the harmonic vibrational frequencies,we finally at 298 K obtained the fractionations,Δ^(137/134)Ba_(soln-ads)=0.07‰,Δ^(137/134)Ba_(Ba(H_(2)O)_(n)Cl_(2)-ads)=0.05‰,andΔ^(137/134)-Ba^(Ba(H_(2)O)_(n)(NO_(3))2-ads)=0.02‰.Overall,there were almost no Ba isotope fractionations during leaching.Although the Ba isotope fractionation can be magnified by the Rayleigh fractionation process in purification,the difference inδ137/134Ba between the initial and final stages did not exceed0.060‰(or 0.045‰)when leaching the standard sample with HCl or HNO_(3),which is equal to or less than the accuracy of Ba isotopic analysis.At a common yield of89.75%,Ba isotopic fractionation induced by incomplete recovery was 0.015‰for HCl(or 0.011‰for HNO_(3)).Finally,if the influence of an incomplete recovery on theδ137/134Ba determination needs to be ignored,the recovery is suggested to be not less than 67%for HCl(or 46%for HNO_(3)).
文摘The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.
基金Funded by National Key R&D Program of China(No.2021YFB3802300)the National Natural Science Foundation of China(No.52171045)the Joint Fund(No.8091B022108)。
文摘The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.
基金supported by the National Natural Science Foundation of China(No.22373084,No.62201494)Hebei Natural Science Foundation(B2022203007)the Cultivation Project for Basic Research and Innovation of Yanshan University(2024LGZD002).
文摘The adsorption properties of a magnesium porphyrin(MgP)molecule on Au(111)surface covered with up to three lay-ers of sodium chloride(NaCl)were investigated by means of first-principles calculations.The most stable adsorption configuration of MgP on the NaCl/Au(111)heterosurfaces was found to be at the Cl-top site with a 20°angle between the[110]lattice direction of NaCl and the Mg–N bond of the molecule.Compared with MgP molecule adsorbed on bare Au(111),the inclusion of NaCl lay-ers can lead to a significant decrease in the adsorption energy of the MgP molecule.The exis-tence of NaCl layers also reduced the charge transfer between the molecule and the surface.For heterosurfaces with two or three monolayers of NaCl,the charge transfer was almost com-pletely suppressed.The obtained partial density of states(PDOS)showed that hybridization between the electronic structures of the adsorbed MgP molecule and the metal surface can be significantly suppressed when NaCl layers were added.For the heterosurface with three lay-ers of NaCl,the PDOS around the Fermi level was almost identical with that of the free molecule,suggesting the electronic structure of the MgP molecule was nicely preserved.Influ-ence of the NaCl layers on the electronic structure of the MgP molecule was mainly found for molecular orbitals(MOs)away from the Fermi level as a result of the large band gap of the NaCl layers.
基金supported by the National Natural Science Foundation of China(Nos.52222409 and U24A20104)the National Key Research and Development Program(No.2024YFB3408900)+1 种基金Partial financial support came from the Fundamental Research Funds for the Central Universities,JLUsupported by the High Performance Computing Center of Jilin University,China.
文摘Solute segregation at grain boundaries(GBs)can significantly influence GB cohesion.In this work,the segregation energies of solutes(Zn,Al,Ag,Ca,and Gd)were first investigated at six symmetrical tilt GBs rotating around[0001]axis of Mg,to uncover the impact of GB characteristics on solute segregation behavior.The results reveal that solute segregation propensity is closely related to the local geometric environment of GB sites,but has little correlation with intrinsic GB properties(such as GB misorientation and GB energy).Furthermore,relationships between GB site characteristics and solute segregation tendencies were established.Ca-like solutes tend to occupy GB sites with larger Voronoi volumes(V),while Zn-like solutes prefer GB sites with smaller V as well as smaller shortest bond lengths(SBL).Based on this finding,we further evaluated the segregation capacities of 26 solutes at their most energetically stable segregation sites and their impact on GB cohesion.A descriptor that can effectively capture the strengthening/embrittling potency of segregated solutes on GBs was proposed by performing the crystal orbital Hamilton population(COHP)analyses.It was found that the discrepancies in bond strength between GBs and free surface dominate the solute-strengthening behavior.Finally,a first-principles“design map”regarding the segregation energies and strengthening energies was provided,which offers a database for designing Mg alloys with high fracture toughness.
基金supported by National Key R&D Program of China(No.2022YFB3705202)National Natural Science Foundation of China(Nos.51831008,52171049 and 52104330).
文摘Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute elements(B,C,N,and O)on the GB.The first-principles calculation based on the density function theory was applied to explore the effect of B,C,N,and O onγ-FeΣ5(210)[001]GB.The GB energy,the segregation energy,the Voronoi volume,and the theoretical tensile test were calculated to investigate the segregation behavior and the strengthening effect.The structural change and electronic evolution were also investigated by bond change,charge density distribution,and density of states.The results show that B is favored to segregate at the capped trigonal prism(CTP)position with a large void and has a strengthening effect on the GB strength,while O and N are preferred to locate at the octahedral(OCT)site and have an embrittling effect on GB cohesion.C can segregate at both the CTP site and the OCT location with little energy difference.As C segregates at the OCT site,it is beneficial for GB strength.However,it is detrimental at the CTP position.It can be seen that the influence of solutes is closely related to the element type and segregated position.
基金supported by the National Natural Science Foundation of China(Grant No.51701180)the Foundation of the State Key Laboratory of Coal Conversion(Grant No.J22-23-103).
文摘MgO is one of the most abundant minerals in the Earth’s interior,and its structure and properties at high temperature and pressure are important for us to understand the composition and behavior in the deep Earth.In the present work,firstprinciples molecular dynamics calculations were performed to investigate the pressure-induced structural evolution of the MgO melts at 4000 K and 5000 K.The results predicted the liquid-solid phase boundaries,and the calculated viscosities of the melts may help us to understand the transport behavior under the corresponding Earth conditions.